When is Task Vector *Provably* Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers

Hongkang Li<sup>1</sup>, Yihua Zhang<sup>2</sup>, Shuai Zhang<sup>3</sup>, Pin-Yu Chen<sup>4</sup>, Sijia Liu<sup>2,4</sup>, Meng Wang<sup>1</sup> <sup>1</sup>Rensselaer Polytechnic Institute, <sup>2</sup>Michigan State University, <sup>3</sup>New Jersey Institute of Technology, <sup>4</sup>IBM Research



<ロト (四ト (三) (三)

### Task Vectors and Task Arithmetic



Figure 1: Task vector.



**Task vector** is the difference between the fine-tuned model and the pre-trained model.

$$\Delta \Psi_{\mathcal{T}} = \Psi_{\mathcal{T}}^* - \Psi^{(0)}, \qquad (1)$$

where  $\Psi_{\mathcal{T}}^*$  is the model fine-tuned on  $(\boldsymbol{X}, y) \sim \mathcal{D}_{\mathcal{T}}$  for task  $\mathcal{T}$ , and  $\Psi^{(0)}$  is the pre-trained model.

**Task arithmetic** refers to adding a linear combination of task vectors of different tasks. Given  $\Psi^{(0)}$  and a set of task vectors  $\{\Delta \Psi_{\mathcal{T}_i}\}_{i \in \mathcal{V}_i}$ .

$$\Psi = \Psi^{(0)} + \sum_{i \in \mathcal{V}} \lambda_i \Delta \Psi_{\mathcal{T}_i},$$
 (2)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

April. 2025

Figure 2: Task arithmetic by adding up two task vectors for inference. No fine-tuning on the two tasks are needed.

for the inference on the downstream task.

Meng Wang (RPI)

1/12

Applications: multi-task learning, unlearning, and out-of-domain generalization in vision and language generation tasks.

Advantage: No need of fine-tuning for new tasks.

- Linear coefficient selection: Simple averaging [Ilharco et al.22, Wortsman et al.2022], Fisher-weighted averaging [Metena & Raffel, 2022] for multi-task learning; negation for unlearning [Ilharco et al.22].
- Task vector construction: sparsification [Yadav et al.2023, Yu et al.24], linearization [Ortiz-Jimenez et al.23].

・ロット 全部 マント・ロット

## Task Correlations Affect Task Arithmetic

### Experiments on Colored-MNIST dataset:

- Classify the parity of digits.
- Control the fraction of red/green digit colors for different task correlations/distributions.

|                     | "Irrelevant" Tasks |                | "Aligned      | d" Tasks      | "Contradictory" Tasks |               |
|---------------------|--------------------|----------------|---------------|---------------|-----------------------|---------------|
|                     | Multi-Task         | Unlearning     | Multi-Task    | Unlearning    | Multi-Task            | Unlearning    |
| Best $\lambda$      | 1.4                | -0.6           | 0.2           | 0.0           | 0.6                   | -1.0          |
| $\mathcal{T}_1$ Acc | 91.83 (-3.06)      | 95.02 (-0.56)  | 95.62 (0.00)  | 95.20 (-0.42) | 79.54 (-16.70)        | 94.21 (-0.61) |
| $\mathcal{T}_2$ Acc | 88.40 (-5.65)      | 50.34 (-45.24) | 92.46 (-3.23) | 90.51 (-5.18) | 62.52 (-33.72)        | 4.97 (-89.85) |

 $\label{eq:Figure 3: Test accuracy (%) of \Psi = \Psi^{(0)} + \Delta \Psi_{\mathcal{T}_1} + \lambda \Delta \Psi_{\mathcal{T}_2} \ on \ task \ \mathcal{T}_1 \ and \ \mathcal{T}_2. \ Different \ task \ correlations \Rightarrow \ Different \ arithmetic \ coefficients.$ 

|                          | Fine-Tuning | $\Psi^*_{\mathcal{T}_1}$ | $\Psi^*_{\mathcal{T}_2}$ | Searching $\lambda_1, \lambda_2$ in $[-2, 3]$ |
|--------------------------|-------------|--------------------------|--------------------------|-----------------------------------------------|
| $(\lambda_1, \lambda_2)$ | N/A         | (1, 0)                   | $(0,\overline{1})$       | (1.2, -0.6)                                   |
| $\mathcal{T}'$ Acc       | 92.21       | 88.10                    | 45.06                    | 91.74                                         |

 $\begin{array}{l} \textit{Figure 4: Test } \Psi = \Psi^{(0)} + \lambda_1 \Delta \Psi_{\mathcal{T}_1} + \lambda_2 \Delta \Psi_{\mathcal{T}_1} \text{ on task } \mathcal{T}'. \ \mathcal{T}' \text{ shares a different distribution from } \mathcal{T}_1 \text{ or } \mathcal{T}_2. \ \textit{The optimal } \lambda_1 \text{ and } \lambda_2 \text{ generates a model that outperforms any separately trained model } \Psi^*_{\mathcal{T}_1} \text{ and } \Psi^*_{\mathcal{T}_2}. \ \mathcal{T}' \text{ and } \mathcal{T}_1 \text{ are positively correlated; } \mathcal{T}' \text{ and } \mathcal{T}_2 \text{ are negatively correlated.} \end{array}$ 

3/12

 $\ensuremath{\mathbf{Q1}}\xspace$  Can we provide generalization guarantees for task arithmetic?

Q2: How does task correlation quantitatively affect the performance of task arithmetic?

 ${\bf Q3}:$  Why do the arithmetic operations of task vectors perform well for out-of-domain generalization?

## Related Theoretical Works

- Some works [Ginart et al.2019, Guo et al.2020, Neel et al.2021, Mu & Klabjan, 2024] theoretically analyze the performance of machine unlearning from an optimization perspective.
- [Izmailov et al.2018, Frankle et al.2020] propose linear mode connectivity, concluding the existence of a small-loss connected region in the loss landscape.
- [Ortiz-Jimenez et al.23] study task arithmetic in model editing with the Neural Tangent Kernel (NTK) framework to linearize the models.

## Problem Formulation

We study binary classification tasks that map each  $\boldsymbol{X} = (\boldsymbol{x}_1, \cdots, \boldsymbol{x}_P)$  to  $y \in \{+1, -1\}$ , where  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $i \in [P]$ .

The **learner model** is considered as a one-layer nonlinear Transformer with  $\Psi$  as the set of parameters, where  $W, V \in \Psi$  are trainable,

$$f(\boldsymbol{X}; \Psi) = \frac{1}{P} \sum_{l=1}^{P} \boldsymbol{a}_{(l)}^{\top} \operatorname{Relu}(\sum_{s=1}^{P} \boldsymbol{V} \boldsymbol{x}_{s} \operatorname{softmax}_{l}(\boldsymbol{x}_{s}^{\top} \boldsymbol{W} \boldsymbol{x}_{l})).$$
(3)

**Data formulation**: Let  $\mu_{\mathcal{T}}$  be the discriminative pattern of  $\mathcal{T}$ . Each token is chosen from  $\{\mu_{\mathcal{T}}, -\mu_{\mathcal{T}}\}$  or other irrelevant patterns. If y = 1 (y = -1), the number of tokens equal to  $\mu_{\mathcal{T}}$  (or  $-\mu_{\mathcal{T}}$ ) is larger than that of  $-\mu_{\mathcal{T}}$  (or  $\mu_{\mathcal{T}}$ ).



### Theoretical Results (Multi-Task learning and Unlearning)

Let  $\Psi = \Psi^{(0)} + \Delta \Psi_{\mathcal{T}_1} + \lambda \Delta \Psi_{\mathcal{T}_2}$ .  $\beta = \Theta(1/d)$ . Loss function  $\ell(\cdot)$ : Hinge loss.

- Define  $\alpha = \boldsymbol{\mu}_{\mathcal{T}_1}^\top \boldsymbol{\mu}_{\mathcal{T}_2}$  as the correlation between  $\mathcal{T}_1$  and  $\mathcal{T}_2$ .
- $\alpha > 0$ , < 0, or = 0, corresponds to "aligned", "contradictory", or "irrelevant" relationship.
- $\Psi_{\mathcal{T}_1}^*$  and  $\Psi_{\mathcal{T}_2}^*$  are trained to achieve an  $\epsilon$  generalization error on  $\mathcal{T}_1$  and  $\mathcal{T}_2$ , respectively.

Theorem 1 (Success of Multi-Task Learning on Irrelevant and Aligned Tasks)

Then, as long as  $\alpha \geq 0$  and  $\lambda \geq 1 - \alpha + \beta$ , we have a desired multi-task learning performance with  $\Psi$ , i.e.,  $\mathbb{E}_{(\mathbf{X}, y) \sim \mathcal{D}_{\mathcal{T}_1}} \ell(\mathbf{X}, y; \Psi) \leq \Theta(\epsilon) + |\lambda| \cdot \beta$ , and  $\mathbb{E}_{(\mathbf{X}, y) \sim \mathcal{D}_{\mathcal{T}_2}} \ell(\mathbf{X}, y; \Psi) \leq \Theta(\epsilon)$ .

Theorem 2 (Success of Unlearning on Irrelevant and Contradictory Tasks)

As long as  $\alpha \leq 0$  and  $-\Theta(\alpha^{-2}) \leq \lambda \leq 0$ , we have a desired unlearning performance with  $\Psi$ , i.e.,  $\mathbb{E}_{(\boldsymbol{X},y)\sim\mathcal{D}_{\mathcal{T}_1}}\ell(\boldsymbol{X},y;\Psi) \leq \Theta(\epsilon) + |\lambda| \cdot \beta$ , and  $\mathbb{E}_{(\boldsymbol{X},y)\sim\mathcal{D}_{\mathcal{T}_2}}\ell(\boldsymbol{X},y;\Psi) \geq \Theta(1)$ .

# Theoretical Results (Out-of-Domain Generalization)

**Out-of-domain generalization** on the task  $\mathcal{T}'$ , given task vectors of tasks  $\{\mathcal{T}_i\}_{i \in \mathcal{V}_{\Psi}}$ . Suppose

- ullet all  $\mu_{\mathcal{T}_i}$  are orthogonal to each other,
- the discriminative pattern of  $\mathcal{T}'$  is  $\mu_{\mathcal{T}'} = \sum_{i \in \mathcal{V}_{\Psi}} \gamma_i \mu_{\mathcal{T}_i} + \kappa \cdot \mu'_{\perp}$  with  $\mu'_{\perp} \perp \{\mu_{\mathcal{T}_i}\}_{i \in \mathcal{V}_{\Psi}}$ ,
- not all  $\gamma_i$  are zero.



Figure 6: An illustration of  $\mu_{T'}$ .

Let  $\Psi = \Psi^{(0)} + \sum_{i \in \mathcal{V}_{\Psi}} \lambda_i \Delta \Psi_{\mathcal{T}_i}, \lambda_i \neq 0$ . Then, for some  $c \in (0, 1)$  and all  $i \in \mathcal{V}_{\Psi}$ , and a non-empty region of  $\lambda_i$ ,  $i \in \mathcal{V}_{\Psi}$ , where

Theorem 3 (Out-of-domain generalization using task arithmetic)

$$egin{cases} \sum_{i\in\mathcal{V}_{\Psi}}\lambda_i\gamma_i\geq 1+c,\ \sum_{i\in\mathcal{V}_{\Psi}}\lambda_i\gamma_i^2\geq 1+c,\ |\lambda_i|\cdoteta\leq c, \end{cases}$$

we have 
$$\mathbb{E}_{(\boldsymbol{X},y)\sim\mathcal{D}_{\mathcal{T}'}}\ell(\boldsymbol{X},y;\Psi)\leq\Theta(\epsilon).$$

(4)

# Theoretical Results (Efficiency)

Recall that 
$$oldsymbol{W},oldsymbol{V}\in\Psi$$
.  $\Deltaoldsymbol{W}_{\mathcal{T}}=oldsymbol{W}_{\mathcal{T}}^*-oldsymbol{W}^{(0)}$ ,  $\Deltaoldsymbol{V}_{\mathcal{T}}=oldsymbol{V}_{\mathcal{T}}^*-oldsymbol{V}^{(0)}$ .

#### Corollary 1 (Low-rank Approximation)

For any task T defined above, there exists rank-1  $\Delta W_{LR}$  and  $\Delta V_{LR}$ , such that

$$\|\Delta \boldsymbol{W}_{\mathcal{T}} - \Delta \boldsymbol{W}_{LR}\|_{F} \le M \cdot \epsilon + \frac{1}{\log M}, \quad and \quad \|\Delta \boldsymbol{V}_{\mathcal{T}} - \Delta \boldsymbol{V}_{LR}\|_{F} \le \Theta(\epsilon), \tag{5}$$

#### Corollary 2 (Sparsification)

Let  $\mathbf{u}_i$  be the *i*-th row of  $\Delta \mathbf{V}_T$ . Then, for a constant fraction of  $\mathbf{u}_i$ , we have  $\|\mathbf{u}_i\| \ge \Omega(m^{-1/2})$ ; for the remaining neurons, we have  $\|\mathbf{u}_i\| \le O(m^{-1/2}\epsilon)$  (pruning these neurons still ensures Theorems 1-3 to hold.)

• • • • • • • •

## Experiments

Image classification on Colored-MNIST with ViT-Small/16

- Consider a merged model  $\Psi = \Psi^{(0)} + \lambda_1 \Delta \Psi_{T_1} + \lambda_2 \Delta \Psi_{T_2}$  constructed by two task vectors for the targeted task  $\mathcal{T}'$ . We estimate  $\gamma_1 \approx 0.792$ ,  $\gamma_2 \approx -0.637$ .
- The result justifies the sufficient conditions in Theorem 3.



Figure 7: (A) The heatmap of the testing accuracy on  $\mathcal{T}'$  using the merged model  $\Psi$ . The black dot is the baseline, while the green cross is the best  $\lambda_1$ ,  $\lambda_2$ . (B) The red region satisfies (4), while the blue region does not.

### Experiments

### Language generation with Phi-3-small (7B)

- Given "Harry Potter 1" (HP1), "Harry Potter 2" (HP2) by J.K. Rowling, and "Pride and Prejudice" (PP) by Jane Austen.
- Estimate task correlations  $\hat{\alpha}(\Psi_{\mathcal{T}_1}^*, \Psi_{\mathcal{T}_2}^*) = \mathbb{E}_{\boldsymbol{X}}[Sim(f(\boldsymbol{X}; \Psi_{\mathcal{T}_1}^*), f(\boldsymbol{X}; \Psi_{\mathcal{T}_1}^*))]$ . HP1 and HP2 are semantically similar, while PP is less aligned with HP1 or HP2.
- Unlearning  $\mathcal{T}_{HP1}$  can effectively degrade the performance of the aligned  $(\mathcal{T}_{HP2})$  as well, while the degradation on the less aligned  $(\mathcal{T}_{PP})$  is relatively smaller.

| $\lambda$                                                                    | 0 (baseline)                                              | -0.2                                                      | -0.4                                                      | -0.6                                                      | -0.8                                                      | -1                                                          |
|------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|
| $\mathcal{T}_{	ext{HP1}} \ \mathcal{T}_{	ext{HP2}} \ \mathcal{T}_{	ext{PP}}$ | $\begin{array}{c} 0.2573 \\ 0.2688 \\ 0.1942 \end{array}$ | $\begin{array}{c} 0.1989 \\ 0.2113 \\ 0.1825 \end{array}$ | $\begin{array}{c} 0.1933 \\ 0.1993 \\ 0.1644 \end{array}$ | $\begin{array}{c} 0.1888 \\ 0.1938 \\ 0.1687 \end{array}$ | $\begin{array}{c} 0.1572 \\ 0.1622 \\ 0.1592 \end{array}$ | 0.1142 (55.61% ↓)<br>0.1563 (52.29% ↓)<br>0.1541 (20.65% ↓) |

 $\label{eq:Figure 8: Rouge-L scores of $\mathcal{T}_{HP1}$ $\mathcal{T}_{HP2}$, and $\mathcal{T}_{PP}$ by $\Psi = \Psi^{(0)'} + $\lambda \cdot \Delta \Psi_{HP1}^{LR}$ using low-rank task vector $\Delta \Psi_{HP1}^{LR}$ (Phi-3-small). The second secon$ 

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

# Summary

• We quantitatively characterize the selection of arithmetic hyper-parameters and their dependence on task correlations so that the resulting task vectors achieve desired multi-task learning, unlearning, and out-of-domain generalization.

• We also demonstrate the validity of using sparse or low-rank task vectors.

• Theoretical results are justified on vision models and large language models.

• Future work: analyzing task vectors in more complex models and designing more robust task vector selection methods.

### Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, et al. Editing models with task arithmetic.

In International Conference on Learning Representations 2022.

Guillermo Ortiz-Jimenez, Alessandro Favero, Pascal Frossard. Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models. In *Conference on Neural Information Processing Systems 2023.* 

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, Yongbin Li. Language models are super mario: Absorbing abilities from homologous models as a free lunch.

In Conference on Machine Learning 2024.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al.

Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time.

12/12

April. 2025

Meng Wang (RPI)

#### In Conference on Machine Learning 2022.

- Matena, Michael S and Raffel, Colin A Merging models with fisher-weighted averaging. In Conference on Neural Information Processing Systems 2022.
- Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving interference when merging models.
   In Conference on Neural Information Processing Systems 2023.
- Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and the lottery ticket hypothesis. In *Conference on Machine Learning 2020.*
- P. Izmailov, A.G. Wilson, D. Podoprikhin, D. Vetrov, and T. Garipov. Averaging Weights Leads to Wider Optima and Better Generalization. In Conference on Uncertainty in Artificial Intelligence 2018.
- Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data deletion in machine learning.

Meng Wang (RPI)

In Conference on Neural Information Processing Systems 2019.

- Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal from machine learning models. In Conference on Machine Learning 2020.
- Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.
  Descent-to-delete: Gradient-based methods for machine unlearning.
  In Algorithmic Learning Theory 2021.
- Siqiao Mu and Diego Klabjan. Rewind-to-delete: Certified machine unlearning for nonconvex functions. *arXiv preprint arXiv:2409.09778, 2024.*