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Transformers and Vision Transformers (ViTs)

@ Transformers achieved great empirical success in numerous areas

@ Transformer-based models gradually become prevalent in vision tasks
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Transformer-based foundation models

Vision Transformer [Dosovitskiy et al.21]
Under what conditions does a Vision Transformer achieve satisfactory generalization?
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Problem formulation and the ViT model

We study a binary classification problem with the dataset {X", y"}N_, with L patches, i.e, tokens in
each X". Each token is a noisy version of a pattern. There are M patterns in total, where two are

discriminative patterns that can determine the label.

@ Labeling function: majority voting of discriminative tokens.

@ Learner network: a shallow ViT with a single-head self-attention
layer and a two-layer perceptron.
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@ Loss function: Hinge loss function. Training with SGD.
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Main theoretical results

Data model: We sample a set of tokens for each data. Define

@ label-relevant tokens: tokens with the pattern that corresponds to the exact label of the data.

@ confusion tokens: tokens with the pattern that corresponds to the other label of the data.

Theorem 1
Given a sufficient large model and c., ay with
m > M?log N, (2)

. > ag/c,  ou, ag: average fraction of label-relevant, confusion tokens (3)

for some c € (0,1/(2e)), and large enough sizes of mini-batch and the set of sampled tokens for each
data, zero generalization error is achieved with a sample complexity N and a number of iterations T :

N>Q(a;?), T=0(a;'n™), n: stepsize (4)
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Main insights

Requirements for the data: the fraction of label-relevant tokens is much more than that
of confusion tokens in each data.

Sample complexity N: linear in o 2.

Required number of iterations T: linear in o, !

@ Technical novelty: A new theoretical framework to analyze the nonconvex interactions in
shallow ViTs, which contain a trainable self-attention layer.
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Comparison between ViT and CNN

Proposition 1

With an approximately the same size of the model, the sample complexity of using CNN to achieve zero

generalization error is Q(a;*), which is an increase by a factor of a2 compared to ViT.
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Figure 1: The impact of asx on the sample complexity for (a) ViT and (b) CNN.
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Sparse attention map and token sparsification

Proposition 2

@ The summation of attention weights correlated with label-relevant tokens converges to 1 —n¢ at a

sublinear rate of O(1/t) for C > 0 when t is large.

@ Removing label-irrelevant tokens or tokens with large noise can improve the generalization.
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Figure 2: (a) Concentration of attention weights (b) Impact of token sparsification on testing loss.
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