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Transformers and Vision Transformers (ViTs)

Transformers achieved great empirical success in numerous areas.

Transformer-based models gradually become prevalent in vision tasks.

Transformer-based foundation models Vision Transformer [Dosovitskiy et al.21]

Under what conditions does a Vision Transformer achieve satisfactory generalization?
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Problem formulation and the ViT model

We study a binary classification problem with the dataset {X n, yn}Nn=1 with L patches, i.e, tokens in
each X n. Each token is a noisy version of a pattern. There are M patterns in total, where two are
discriminative patterns that can determine the label.

Labeling function: majority voting of discriminative tokens.

Learner network: a shallow ViT with a single-head self-attention
layer and a two-layer perceptron.

F (X n) =
1

|Sn|
∑
l∈Sn

a⊤
(l)Relu(WVX nsoftmax(X n⊤W⊤

K WQxn
l ))

(1)

Loss function: Hinge loss function. Training with SGD.

Hongkang Li 3 / 7



Main theoretical results

Data model: We sample a set of tokens for each data. Define

label-relevant tokens: tokens with the pattern that corresponds to the exact label of the data.

confusion tokens: tokens with the pattern that corresponds to the other label of the data.

Theorem 1
Given a sufficient large model and α∗, α# with

m ≳ M2 logN, (2)

α∗ ≥ α#/c , α∗, α# : average fraction of label-relevant, confusion tokens (3)

for some c ∈ (0, 1/(2e)), and large enough sizes of mini-batch and the set of sampled tokens for each
data, zero generalization error is achieved with a sample complexity N and a number of iterations T :

N ≥ Ω(α−2
∗ ), T = Θ(α−1

∗ η−1), η : step size (4)
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Main insights

Requirements for the data: the fraction of label-relevant tokens is much more than that
of confusion tokens in each data.

Sample complexity N: linear in α−2
∗ .

Required number of iterations T : linear in α−1
∗ .

Technical novelty: A new theoretical framework to analyze the nonconvex interactions in
shallow ViTs, which contain a trainable self-attention layer.
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Comparison between ViT and CNN

Proposition 1
With an approximately the same size of the model, the sample complexity of using CNN to achieve zero
generalization error is Ω(α−4

∗ ), which is an increase by a factor of α−2
∗ compared to ViT.

(a) (b)

Figure 1: The impact of α∗ on the sample complexity for (a) ViT and (b) CNN.
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Sparse attention map and token sparsification

Proposition 2

The summation of attention weights correlated with label-relevant tokens converges to 1− ηC at a
sublinear rate of O(1/t) for C > 0 when t is large.

Removing label-irrelevant tokens or tokens with large noise can improve the generalization.

(a) (b)

Figure 2: (a) Concentration of attention weights (b) Impact of token sparsification on testing loss.
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