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Development of deep learning

Take the area of NLP as an example.

Figure 1: Deep Learning paradigm1

1source from [Zhao et al.23]
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Large Language Model (LLM) and In-context learning (ICL)

Transformer-based foundation models, e.g., ChatGPT, GPT-4, Sora, have achieved great
empirical success in many areas.
Large foundation models are able to implement in-context learning (ICL) and reasoning.

Figure 2: GPT-4. Source from medium Figure 3: Sora. Source from medium
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Large Language Model (LLM) and In-context learning (ICL)

In-context learning makes predictions for new tasks on pre-trained LLM without
fine-tuning the model.
It is implemented by providing a few testing examples and necessary instructions as a
prompt for the testing data.

Figure 4: Machine Translation with ICL
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Our focus

Despite the empirical success of ICL, one fundamental and theoretical question is less
investigated, i.e.,

How can a Transformer be trained to perform ICL and
generalize in and out of domain successfully and efficiently?

Hongkang Li April, 2024 5 / 33



Related works

[Garg et al.22,Akyurek et al. 23] propose a framework for studying ICL on learning linear
functions.

Consider a prompt P = (x1, f (x1), x2, f (x2), · · · , xquery ). f is a linear function.
We say a model M can in-context learn a function f with up to an ϵ error to predict
f (xquery ), if

EP [ℓ(M(P), f (xquery ))] ≤ ϵ. (1)

The model M parameterized by Θ is trained by minimizing the risk function

min
Θ

EP,f [ℓ(MΘ(P
i ), f (x iquery ))]. (2)

They show that the trained Transformer is able to learn unseen linear functions from
in-context examples with performance comparable to the optimal least squares estimator.
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Related works

A few works theoretically study the training dynamics and generalization of Transformers in
implementing ICL.

[Zhang et al.24,Wu et al.24] study linear regression tasks on {(xn, f (xn))}Nn=1, where f is
a linear function, using the prompt

E =

(
x1 x2 · · · xl xquery

f (x1) f (x2) · · · f (xl) 0

)
∈ R(d+1)×(l+1). (3)

The training model they consider is a one-layer Transformer with linear attention,

F (E ; Θ) = E +W PVE · E⊤WKQE . (4)

[Zhang et al.24] further study the generalization when the data/task distribution shift
exists; [Wu et al.24] characterize the required number of pretraining tasks for ICL.
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Related works

Given the prompt in (3), [Huang et al.23] explore a one-layer Transformer with softmax
attention on learning linear regression tasks, i.e.,

F (E ; Θ) =
N∑
i=1

yi softmax(x⊤i Θxquery ) (5)

[Huang et al.23] consider xi as orthogonal features, following the line of feature-learning
analysis.
[Huang et al.23] in-depth characterize the dynamics of the training process under cases of
balanced and imbalanced prompt examples.
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Our work and major contributions

Our recent work "Training Nonlinear Transformers for Efficient In-Context Learning: A
Theoretical Learning and Generalization Analysis"2 has the following contributions.

A theoretical characterization of how to train Transformers with nonlinear attention and
nonlinear MLP and to enhance their ICL capability.

Expand the theoretical understanding of the mechanism of the ICL capability of
Transformers.

Theoretical justification of Magnitude-based Pruning in preserving ICL.

2https://arxiv.org/pdf/2402.15607.pdf
Hongkang Li April, 2024 9 / 33

https://arxiv.org/pdf/2402.15607.pdf


Our work and major contributions

Summary of contributions and comparisons with related works.

Theoretical
Works

Nonlinear
Attention

Nonlinear
MLP

Training
Analysis

Distribution
-Shifted Data

Tasks

[Zhang et al.24] ✓ ✓ linear regression
[Huang et al.23] ✓ ✓ linear regression
[Wu et al.24] ✓ linear regression

Ours ✓ ✓ ✓ ✓ classification

Table 1: Comparison with existing works about training analysis and generalization guarantee of ICL
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Problem formulation

We study binary classification problems. Given the input xquery , we aim to predict the label
f (xquery ) for the task f . We conduct training with constructed prompts P on a model to
enable ICL.

P =

(
x1 x2 · · · xl xquery
y1 y2 · · · yl 0

)
:= (p1,p2, · · · ,pquery ). (6)

xi and yi are context inputs and outputs, respectively.
yi = embedding(f (xi )) is an embedding of f (xi ). yi = q if f (xi ) = +1. yi = −q if
f (xi ) = −1.
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Problem formulation

Learning model: a single-head, one-layer Transformer with a self-attention layer and a
two-layer perceptron, i.e.,

F (Ψ;P) = a⊤Relu(WO

l∑
i=1

WVpi · attn(Ψ;P, i)),

attn(Ψ;P, i) = softmax((WKpi )
⊤WQpquery )

(7)

Figure 5: The Transformer network for learning
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Problem formulation

Model training: The training is to solve the empirical risk minimization using N pairs of
prompt and labels {Pn, zn}Nn=1, Ψ = {WQ ,WK ,WV ,WO , a},

min
Ψ

RN(Ψ) :=
1
N

N∑
n=1

ℓ(Ψ;Pn, zn) (8)

The query and context inputs are sampled from a distribution D.
The task f n is sampled from a distribution T . The training tasks form a set Ttr ⊂ T .
ℓ(Ψ;Pn, zn) = max{0, 1 − zn · F (Ψ,Pn)} is the Hinge loss.
The model is trained via stochastic gradient descent (SGD).
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Problem formulation

Generalization: We introduce in-domain and out-of-domain generalization.
In-domain generalization: No distribution shift between training and testing data. The
generalization error is defined as

E
xquery∼D,f ∈T \Ttr

[ℓ(Ψ;P, z)]. (9)

Out-of-domain generalization: The testing queries follow D′ ̸= D, and the testing tasks
follow T ′ ̸= T . The generalization error is defined as

E
xquery∼D′,f ∈T ′

[ℓ(Ψ;P, z)]. (10)
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Problem formulation
Model pruning:

Let S ∈ [m] be the index set of WO neurons.
Pruning neurons in S: removing corresponding rows of the trained WO .

Figure 6: Pruning on WO .

Hongkang Li April, 2024 15 / 33



Formulating data and tasks

In-domain data:
{µj}M1

j=1: in-domain-relevant (IDR) pattern; {νj}M2
j=1: in-domain-irrelevant (IDI) pattern.

IDR and IDI patterns are orthogonal.
For a constant κ, each in-domain data

x = µj + κνk (11)

In-domain tasks: A task based on µa and µb is defined as
f (x) = +1 (or −1) if the IDR pattern of x is µa (or µb).
f (x) is randomly and equally chosen from +1 and −1 in other cases.
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Formulating data and tasks

Out-of-domain data:
{µ′

j}
M1
j=1: out-of-domain-relevant (ODR) pattern; {ν ′

j}
M2
j=1: out-of-domain-irrelevant (ODI)

pattern. ODR and ODI patterns are orthogonal.
For a constant κ′, each out-of-domain data

x = µ′
j + κ′ν ′

k (12)

Out-of-domain tasks: A task based on µ′
a and µ′

b is defined as
f (x) = +1 (or −1) if the ODR pattern of x is µ′

a (or µ′
b).

f (x) is randomly and equally chosen from +1 and −1 in other cases.
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Formulating data and tasks

Prompt input selection:
For the training task based on µa and µb,

With a probability of α/2, select examples of µa and µb.
With a probability of (1 − α)/(M1 − 2), select examples of other IDR patterns.

For the testing task based on µa and µb (or µ′
a and µ′

b), assume at least α′/2 fraction of
context inputs contain the same IDR (or ODR) pattern as the query.

Figure 7: Example of prompt, α = 2/3.
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Main theoretical results

Theorem 1 (In-domain generalization)

For any ϵ > 0, as long as
1 the training tasks Ttr uniformly cover all the IDR patterns and labels with

|Ttr |/|T | ≥ (M1 − 1)−1/2, which means training a small fraction of the total tasks is
sufficient,

2 the lengths of training and testing prompts ltr ≥ Ω(α−1), lts ≥ α′−1,
3 and the number of iterations T = Θ(α−2/3),

then with a high probability, the in-domain generalization error of the returned model is less
than O(ϵ).
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Main theoretical results

Consider each ODR pattern as a linear combination of IDR patterns. Denote S1 as the
summation of the linear coefficients.

Theorem 2 (Out-of-domain generalization)

Suppose that the conditions (1) to (3) in Theorem 1 hold. If
S1 ≥ 1,
each ODI pattern is in the subspace spanned by IDI patterns,

then with a high probability, the out-of-domain generalization error of the returned model is
less than O(ϵ).
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Main theoretical results

Theorem 3 (Model pruning)

There exists a constant fraction of MLP-layer neurons of WO with large weights, while the
remaining have small weights.

Pruning all neurons with small weights leads to a generalization error O(ϵ+M
−1/2
1 ),

which is almost the same as without pruning.
Pruning an R fraction of neurons with large weights results in a generalization error
greater than Ω(R).
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ICL mechanism by the trained transformer

Proposition 1

W (T )
Q and W (T )

K mainly project context inputs to the IDR or ODR pattern.
After training, attention weights become concentrated on contexts that share the same
IDR/ODR pattern as the query.

Figure 8: The magnitude of the trained attention layer.
xdr: IDR or ODR pattern of pquery .

Figure 9: The attention weight summation
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ICL mechanism by the trained transformer

Proposition 2

The feature embedding of rows of W (T )
O W (T )

V approximate µ̄, i.e., the average of IDR
patterns.

The label embedding of rows W (T )
O W (T )

V approximate q for positive neurons and −q for
negative neurons.

Figure 10: The feature embedding of WOWV . bar:
iteration

Figure 11: The label embedding of WOWV . bars:
iterations
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).
Each attention layer selects contexts with the same IDR pattern as the query.

Figure 12: Layer 1 self-attention Figure 13: Layer 2 self-attention Figure 14: Layer 3 self-attention

Hongkang Li April, 2024 24 / 33



ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).
The magnitude of the majority of neurons increases along the training.
The angle changes still hold for one of the layers.

Figure 15: Layer 1 self-attention Figure 16: Layer 2 self-attention Figure 17: Layer 3 self-attention
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Numerical experiments

Verifying the sufficient conditions for out-of-domain generalization.
S1 ≥ 1 is needed for a desired out-of-domain generalization.
The required length of testing prompts decreases as α′ increases.

Figure 18: Out-of-domain ICL classification error on
GPT-2 with different S1

Figure 19: Out-of-domain ICL classification error on
GPT-2 with different α′
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Numerical experiments

Comparing ICL on a one-layer Transformer with other machine learning algorithms.

Figure 20: Binary classification performance of using
different algorithms, α′ = 0.8

Figure 21: Binary classification performance of using
different algorithms, α′ = 0.6

Logistic: logistic regression; SVM Gau.: SVM with Gaussian kernel; SVM Lin.: SVM with
linear kernel; 1-NN: 1-nearest neighbor; 3-NN: 3-nearest neighbor.
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Numerical experiments

Magnitude-based model pruning for out-of-domain ICL inference.

Figure 22: Out-of-domain classification error with model
pruning of the trained WO and the magnitude of WO
neurons.

Figure 23: Out-of-domain classification error with
different α′
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Summary

This work provides theoretical analyses of the training dynamics of Transformers with
nonlinear attention and nonlinear MLP, and the resulting ICL capability for new tasks with
possible data shift.

This work also provides a theoretical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability.

This work provably characterizes the mechanism of ICL implemented by a single-head,
one-layer Transformer.
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Further exploration in LLM reasoning ability

Reasoning problems

Can Transformer-based LLM solve reasoning problems?
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Further exploration in LLM reasoning ability
Chain-of-Thought (COT)

Figure 24: Few-shot COT [Wet et al.22]

Relationship with ICL: prompting multiple steps of reasoning.
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Further exploration in LLM reasoning ability

Existing works focus on the expressive power of Transformer in implementing COT.
[Li et el.23]: COT=Filtering+ICL.
[Zhang et al.23,Li et al.23]: Transformers can be constructed to solve many reasoning
problems via COT.
[Yang et al.24]: Linear Transformers can be more efficient than softmax Transformers in
some dynamic programming tasks.

Problems to solve:
How can a Transformer be trained to perform COT?
When is COT better than ICL?
Generalization with Data/Task distribution shift.
Linear Transformer vs Softmax Transformer.
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Thank you!

Q & A
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