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Development of deep learning

Take the area of NLP as an example.
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Figure 1: Deep Learning paradigm®
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.
Large Language Model (LLM) and In-context learning (ICL)

@ Transformer-based foundation models, e.g., ChatGPT, GPT-4, Sora, have achieved great
empirical success in many areas.

o Large foundation models are able to implement in-context learning (ICL) and reasoning.

@ OpenAl

® GPT-4

Figure 2: GPT-4. S fr dil .
& ource from medium F/gure 3: Sora. Source from medium
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https://medium.com/@thedatabeast/exploring-the-updated-gpt-4-unveiling-new-features-and-capabilities-27070f9609b0
https://medium.com/@tarunag10/openais-latest-marvel-sora-transforms-text-into-terrifyingly-realistic-videos-2ef2808555c5

Large Language Model (LLM) and In-context learning (ICL)

@ In-context learning makes predictions for new tasks on pre-trained LLM without
fine-tuning the model.

@ It is implemented by providing a few testing examples and necessary instructions as a
prompt for the testing data.

f(xquery):ei
T

Pre-trained LLM

t t t 4 4 t
X1 f(x1) %3 f(x3) x3 f(x3) = Xquery
[cat, katze, dog, hund, apple, apfel, -+ egg]

N—— N

——
translation task  prompt
Figure 4: Machine Translation with ICL
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Our focus

Despite the empirical success of ICL, one fundamental and theoretical question is less
investigated, i.e.,

How can a Transformer be trained to perform ICL and
generalize in and out of domain successfully and efficiently?
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Related works

[Garg et al.22, Akyurek et al. 23] propose a framework for studying ICL on learning linear
functions.
o Consider a prompt P = (x1, f(x1), X2, f(x2),- -+ , Xquery)- f is a linear function.
@ We say a model M can in-context learn a function f with up to an € error to predict
f (Xquery), if

EP[K(M(P% f(Xquery))] <e (1)
@ The model M parameterized by © is trained by minimizing the risk function
m@in EP,f[E(M@(Pi)ﬁ f(XZ]uery))]' (2)

@ They show that the trained Transformer is able to learn unseen linear functions from
in-context examples with performance comparable to the optimal least squares estimator.
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Related works

A few works theoretically study the training dynamics and generalization of Transformers in
implementing ICL.

o [Zhang et al.24, Wu et al.24] study linear regression tasks on {(xn, f(xs))}"_;, where f is
a linear function, using the prompt

X1 X2 X| Xquer: d+1)x(I1+1
E= query ) g Rd+1)x(1+1), 3
<f(x1) fxx) - f(x) 0 ) (3)

The training model they consider is a one-layer Transformer with linear attention,
F(E;0)=E+ WFPVE. ETWKQE, (4)

@ [Zhang et al.24] further study the generalization when the data/task distribution shift
exists; [Wu et al.24] characterize the required number of pretraining tasks for ICL.
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Related works

e Given the prompt in (3), [Huang et al.23] explore a one-layer Transformer with softmax
attention on learning linear regression tasks, i.e.,

N
F(E;©) = Zy,-softmax(x,-—rexquery) (5)
i=1
e [Huang et al.23] consider x; as orthogonal features, following the line of feature-learning
analysis.
@ [Huang et al.23] in-depth characterize the dynamics of the training process under cases of
balanced and imbalanced prompt examples.
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Our work and major contributions

Our recent work "Training Nonlinear Transformers for Efficient In-Context Learning: A
Theoretical Learning and Generalization Analysis"? has the following contributions.

@ A theoretical characterization of how to train Transformers with nonlinear attention and
nonlinear MLP and to enhance their ICL capability.

o Expand the theoretical understanding of the mechanism of the ICL capability of
Transformers.

@ Theoretical justification of Magnitude-based Pruning in preserving ICL.

Zhttps:/ /arxiv.org/pdf/2402.15607.pdf
e s


https://arxiv.org/pdf/2402.15607.pdf

Our work and major contributions

Summary of contributions and comparisons with related works.

Theoretical Nonlinear Nonlinear Training  Distribution Tasks
Works Attention MLP Analysis  -Shifted Data
[Zhang et al.24] v v linear regression
[Huang et al.23] v v linear regression
[Wu et al.24] v linear regression
Ours v v v v classification

Table 1: Comparison with existing works about training analysis and generalization guarantee of ICL
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Problem formulation

We study binary classification problems. Given the input Xquer,, we aim to predict the label

f(Xquery) for the task f. We conduct training with constructed prompts P on a model to
enable ICL.

(X1 X2 - X Xquery \ .
P_<y1 Yo ooy 0 >_ (plap2> 7pquery)- (6)

@ x; and y; are context inputs and outputs, respectively.

e y; = embedding(f(x;)) is an embedding of f(x;). yi = q if f(x;) =+1. yi = —q if
f(X,') =-—1.
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Problem formulation

Learning model: a single-head, one-layer Transformer with a self-attention layer and a
two-layer perceptron, i.e.,

/
F(V; P) =a Relu(Wo Y~ Wyp; - attn(V; P, i), -
i=1

attn(V; P, i) = softmax((Wkp;) " Wopquery)

P11 >
softmax Relu
P2 — Wy
P Wy = Wy = a =F(¥;P)
Pz —~
pquery*' WQ
self-attention MLP

Figure 5: The Transformer network for learning
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Problem formulation

Model training: The training is to solve the empirical risk minimization using N pairs of
prompt and labels {P",z"}N_ W = {Wq, Wk, W\, W, a},
1N
1 PR . n n
min Ry (V) := NZE(\U, P" z") (8)

n=1

@ The query and context inputs are sampled from a distribution D.

@ The task " is sampled from a distribution 7. The training tasks form a set 7, C 7.
e ((V; P" z") = max{0,1 — z" - F(V, P")} is the Hinge loss.

@ The model is trained via stochastic gradient descent (SGD).
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Problem formulation

Generalization: We introduce in-domain and out-of-domain generalization.

@ In-domain generalization: No distribution shift between training and testing data. The
generalization error is defined as

E (W P, 2)]. 9
XqueryN'DfeT\ﬂr[ ( Z)] ( )

@ Out-of-domain generalization: The testing queries follow D’ # D, and the testing tasks
follow 77 # T. The generalization error is defined as

P, 2)]. 1
xque,yND’,fET’[g(\U’ ,2)] (10)
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]
Problem formulation

Model pruning:
o Let & € [m] be the index set of W neurons.
@ Pruning neurons in S: removing corresponding rows of the trained Wo.

Wo Wo

a
pruning\A

Figure 6: Pruning on Wo.
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Formulating data and tasks

In-domain data:
o {u; j’\illz in-domain-relevant (IDR) pattern; {uj}j’.\/’:zl: in-domain-irrelevant (IDI) pattern.
o IDR and IDI patterns are orthogonal.

@ For a constant k, each in-domain data
X = pj + KUk (11)

In-domain tasks: A task based on p, and up, is defined as
e f(x) =+1 (or —1) if the IDR pattern of x is p, (or pp).

e f(x) is randomly and equally chosen from +1 and —1 in other cases.
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Formulating data and tasks

Out-of-domain data:
° {u}}jl\ill: out-of-domain-relevant (ODR) pattern; {Vj}}‘izlz out-of-domain-irrelevant (ODI)
pattern. ODR and ODI patterns are orthogonal.

o For a constant «/, each out-of-domain data
x = p; + KV (12)

Out-of-domain tasks: A task based on p, and p) is defined as
o f(x) =41 (or —1) if the ODR pattern of x is u/, (or p},).

e f(x) is randomly and equally chosen from +1 and —1 in other cases.
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Formulating data and tasks
Prompt input selection:
For the training task based on p, and pp,
e With a probability of /2, select examples of p, and pp.

e With a probability of (1 — «)/(M; — 2), select examples of other IDR patterns.

For the testing task based on p, and pp, (or p), and p}), assume at least /2 fraction of
context inputs contain the same IDR (or ODR) pattern as the query.

Task: classification based on g, and u,

I L L

#1—03vs  p; +01v,  pug— 04w 1 +0.2v;

+q 4 q T
Conteﬁ,fa =2/3 query

Figure 7: Example of prompt, oo = 2/3.
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Main theoretical results

Theorem 1 (In-domain generalization)

For any € > 0, as long as

@ the training tasks Ti uniformly cover all the IDR patterns and labels with
e |/IT| > (My — 1)~Y/2, which means training a small fraction of the total tasks is
sufficient,

1

’

@ the lengths of training and testing prompts l;, > Q(a™1), hs > o/~
© and the number of iterations T = @(a_2/3),

then with a high probability, the in-domain generalization error of the returned model is less
than O(e).

Hongkang Li April, 2024
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Main theoretical results

Consider each ODR pattern as a linear combination of IDR patterns. Denote S; as the
summation of the linear coefficients.

Theorem 2 (Out-of-domain generalization)

Suppose that the conditions (1) to (3) in Theorem 1 hold. If
e 5 >1,
@ each ODI pattern is in the subspace spanned by IDI patterns,

then with a high probability, the out-of~-domain generalization error of the returned model is
less than O(e).
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Main theoretical results

Theorem 3 (Model pruning)
@ There exists a constant fraction of MLP-layer neurons of W with large weights, while the
remaining have small weights.
o Pruning all neurons with small weights leads to a generalization error O(e + M, Y 2),
which is almost the same as without pruning.
@ Pruning an R fraction of neurons with large weights results in a generalization error
greater than Q(R).
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ICL mechanism by the trained transformer

Proposition 1

° Wé,T) and W,(<T) mainly project context inputs to the IDR or ODR pattern.

e After training, attention weights become concentrated on contexts that share the same
IDR/ODR pattern as the query.

- 10
°
©
gos
e £
2 ¢ 206
2 e _—— The same ODR
§ 4 —— Wopquery -%04 Other
Wkpi i ’ \\
—&— xdriWopquery 2
202
0.0 ==
0 80 IEGO 240 320 400 0 40 80 120 160 200
poches
Epoches

Figure 8: The magnitude of the trained attention layer.
xdr: IDR or ODR pattern of pguery -
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ICL mechanism by the trained transformer

Proposition 2

@ The feature embedding of rows of W(T) W( 7 approximate [i, i.e., the average of IDR

patterns.
@ The label embedding of rows W( )W( ) approximate q for positive neurons and —q for
negative neurons.
v
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300 1.00 300 | 300
03 g Lab. Emb. a;> 0
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Figure 11: The label embedding of WoWy, . bars:

Figure 10: The feature embedding of WoWy, . bar: ! r
iterations

iteration
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).

@ Each attention layer selects contexts with the same IDR pattern as the query.

. v 08 "
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Figure 12: Layer 1 self-attention Figure 13: Layer 2 self-attention Figure 14: Layer 3 self-attention
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).

@ The magnitude of the majority of neurons increases along the training.

@ The angle changes still hold for one of the layers.
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Figure 15: Layer 1 self-attention
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Numerical experiments

Verifying the sufficient conditions for out-of-domain generalization.

@ 51 > 1is needed for a desired out-of-domain generalization.

@ The required length of testing prompts decreases as o increases.

107!

10-2 Vi am
- 5=13
e 5;=1.1
—— 5,=09
-4 51=07
10-3 $,=05

Classification error

0 4 8 12 16 20

Context length

Figure 18: Out-of-domain ICL classification error on

GPT-2 with different Sy
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Figure 19: Out-of-domain ICL classification error on

GPT-2 with different o’
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Numerical experiments

Comparing ICL on a one-layer Transformer with other machine learning algorithms.

109;

. 10° —— L
. —<— Logistic o —— Logistic
e —— SVM Gau. 2 — SVMGau.
T 10-1 —— SVMLin. e —4— SvMLin.
5 1NN 5 1071 1NN
= ) = 3NN 8 \(\"_ 3NN
21072 vy 21072 s
i % © w
(@] ()
-3 -3
1o 8 12 16 20 1o 8 12 16 20
# of contexts or samples # of contexts or samples
Figure 20: Binary classification performance of using Figure 21: Binary classification performance of using
different algorithms, o’ = 0.8 different algorithms, o' = 0.6

o Logistic: logistic regression; SVM Gau.: SVM with Gaussian kernel; SVM Lin.: SVM with
linear kernel; 1-NN: 1-nearest neighbor; 3-NN: 3-nearest neighbor.
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Numerical experiments

Magnitude-based model pruning for out-of-domain ICL inference.
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Figure 22: Out-of-domain classification error with model
pruning of the trained Wy and the magnitude of Wp

neurons.
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Summary

@ This work provides theoretical analyses of the training dynamics of Transformers with
nonlinear attention and nonlinear MLP, and the resulting ICL capability for new tasks with
possible data shift.

@ This work also provides a theoretical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability.

@ This work provably characterizes the mechanism of ICL implemented by a single-head,
one-layer Transformer.
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Further exploration in LLM reasoning ability

Reasoning problems

C8 I i ST 3 EE T U Q: Take the last letters of Q: What home entertainment

el el el 2 e the words in "Elon Musk” equipment requires cable?

arrive, how many cars are in and concatenate them Answer Choices: (a) radio shack

the parking lot? (b) substation (c) television (d)
A: The answer is nk. cabinet

A: The answer is 5
A: The answer is (c).

Arithmetic Reasoning (AR) Symbolic Reasoning (SR) Commonsense Reasoning (CR)
(+—x+...)
Can Transformer-based LLM solve reasoning problems?
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Further exploration in LLM reasoning ability

Chain-of-Thought (COT)

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The answer is 27. €

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
leach is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have? j

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

Cnswer is9. o J

Figure 24: Few-shot COT [Wet et al.22]

Relationship with ICL: prompting multiple steps of reasoning.

Hongkang Li
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-
Further exploration in LLM reasoning ability

Existing works focus on the expressive power of Transformer in implementing COT.
o [Li et el.23]: COT=Filtering+ICL.

@ [Zhang et al.23,Li et al.23]: Transformers can be constructed to solve many reasoning
problems via COT.

@ [Yang et al.24]: Linear Transformers can be more efficient than softmax Transformers in
some dynamic programming tasks.

Problems to solve:
@ How can a Transformer be trained to perform COT?
@ When is COT better than ICL?
@ Generalization with Data/Task distribution shift.

@ Linear Transformer vs Softmax Transformer.

i, 2] VS



Thank you!

Q& A
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