
Theoretical and Algorithmic Foundations of In-Context Learning and reasoning 
Using Properly Trained Transformer Models

Motivation
Transformer-based foundation models, 
e.g., GPT-4, Sora, have achieved great 
empirical success in many areas.

l Large foundation models are able to 
implement in-context learning (ICL) 
and reasoning.

l Theoretical understanding of how a 
Transformer can be trained to 
perform ICL and generalize in and 
out of domain successfully and 
efficiently is less investigated.
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Current Progress
l We provide a theoretical characterization of how to train 

nonlinear Transformers to enhance their ICL capability on 
classification tasks. .

l We expand the 
theoretical 
understanding of 
the mechanism of 
the ICL capability 
of Transformers.

l We theoretically 
justify the 
Magnitude-based 
Pruning in 
preserving ICL.

Theorem 1 (informal): Given enough neurons 
and a large batch, and prompt lengths inverse 
in the fraction of relevant tokens 𝛼, then after 
training with 𝛩(𝛼G)) steps, 
u the returned one-layer Transformer model 

achieves an in-domain generalization error 
no larger than 𝜖. 

u If the testing relevant patterns are linear 
combinations of the trained ones with 
coefficient summation no larger than 1, the 
out-of-domain generalization error is no 
larger than 𝜖.	

LLM reasoning

Problems to solve
l How can a Transformer be trained 

to learn different hidden causal 
structure?

l Why does adding intermediate 
steps help the reasoning in theory?

l What is the mechanism of a 
Transformer implementing 
reasoning in context?

Theoretical contributions
l Hidden Markov chain modeling.

l Next token prediction beyond 
classification and regression.

Experiments
l Evaluate the results on the 

arithmetic reasoning dataset 
GSM8K and the commonsense 
reasoning dataset CSQA.


