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Chain-of-Thought (CoT) in Large Language Model (LLM)
Chain-of-Thought (CoT) enables the reasoning ability of LLM by augmenting the query using
multiple examples with intermediate steps (few-shot) or necessary instructions (zero-shot).

Figure 1: Few-shot and zero-shot CoT [Kojima et al.22]
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Chain-of-Thought (CoT) in Large Language Model (LLM)

Besides testing, high-quality CoT data is also beneficial in LLM training.
Process supervision [Lightman et al.24] with CoT data outperforms outcome supervision.
CoT+RL is crucial for training GPT-o1.
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Our focus

Despite the empirical success of Chain-of-Thought, one fundamental and theoretical question
remains less explored, i.e.,

Why can a Transformer be trained to generalize on multi-step
reasoning tasks via CoT?
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Related Theoretical Works and Background

Existing works focus on the expressive power of Transformer in implementing CoT.

[Li et el.23]:
Transformers can learn MLP functions by CoT.
CoT=filtering + In-Context Learning (ICL). Filtering: attends to the relevant token. ICL:
Use the filtered tokens to generate the output.

[Feng et al.23,Li et al.24]:
Without CoT, Transformers can only solve limited problems unless the model size grows
super-polynomially w.r.t. the sequence length.
Transformers of constant size can be constructed to solve arithmetic/equation/Dynamic
Programming tasks via CoT.
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Related Theoretical Works and Background

Only a concurrent work, [Wen et al.25], provides the convergence and sample complexity
analysis of zero-shot CoT using Transformers for sparse parity tasks: Given a length-n binary
sequence, produce the XOR output of k selected entries.

Learning using one-layer Transformers requires exponential to k samples without CoT
when the number of parameters is limited.
One-layer Transformers can provably learn sparse parity by CoT with almost linear samples
with respect to k and n.

Figure 2: CoT for the sparse parity problem [Wen et al.25]
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Our work and major contributions

Our recent work "Training Nonlinear Transformers for Chain-of-Thought Inference: A
Theoretical Generalization Analysis"1 accepted by ICLR 2025 has the following contributions.

A quantitative analysis of how the training can enable the CoT ability with nonlinear
Transformers.

A quantitative analysis of how context examples affect CoT performance.

A theoretical characterization of when and why CoT outperforms ICL.

1https://openreview.net/forum?id=n7n8McETXw
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Problem formulation

Consider learning K -steps reasoning tasks f = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1 with few-shot CoT.

P = (E1,E2, · · · ,Eltr ,Qk) as the training prompt, where Ei =

(
xi yi ,1 · · · yi ,K−1
yi ,1 yi ,2 · · · yi ,K

)
is the

i-th context example, Qk =

(
z0 z1 · · · zk−2 zk−1
z1 z2 · · · zk−1 0

)
is the first k steps of the reasoning

query for any k in [K ].
The label for prediction is zk for the k-th step, denoted as z for P.
Denote each column of P as pi . Add the positional encoding ci (periodic) to each pi to
obtain p̃i = pi + c(i mod K).
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Problem formulation

Learning model with Ψ = {WK ,WQ ,WV }:

f (Ψ;P) =

len(P)−1∑
i=1

WV p̃i softmax((WK p̃i )
⊤WQ p̃query ). (1)

Model Training: Following theoretical works [Li et el.23,Feng et al.23,Li et al.24], we use
CoT data for model training. Given the training set {Pn, zn}Nn=1, we train the model with
empirical risk minimization.

min
Ψ

RN(Ψ) :=
1
N

N∑
n=1

ℓ(Ψ;Pn, zn) (2)

The query and context inputs are sampled from a distribution D.
The task f n is sampled from a distribution T . The training tasks form a set Ttr ⊂ T .
ℓ(Ψ;Pn, zn) = 1/2 · ∥zn − f (Ψ;pn)∥2 is the squared loss.
The model is trained via stochastic gradient descent (SGD).
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Problem formulation

Chain-of-Thought Inference:

The testing prompt P = (E1,E2, · · · ,Elts ,pquery ), where pquery =

(
xquery

0

)
. Predict {zk}Kk=1.

Let P1 = P, P0 be the columns of P before the query. In the k-th step inference,
Generate vk as the most probable output from the set Y of all possible outputs (greedy
decoding):

vk = argmin
u∈Y

1
2
∥F (Ψ;P)− u∥2. (3)

Use vk to update Pk and construct Pk+1:

Pk = (Pk−1

(
vk−1
vk

)
),Pk+1 = (Pk

(
vk
0

)
) (4)

The CoT generalization error on test data distribution D′ and test task f ∈ T ′:
RCoT ,xquery∼D′,f ∈T ′(Ψ) = Exquery∼D′ [ 1

K

∑K
k=1 1[zk = vk ]].
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Problem formulation

In-Context Learning Inference:

The testing prompt P = (E1,E2, · · · ,Elts ,pquery ), where pquery =

(
xquery

0

)
, and

Ei =

(
xi 0 · · · 0

yi ,K 0 · · · 0

)
is the i-th context example. Predict zK .

Generate the output v = argminu∈Y
1
2∥F (Ψ;P)− u∥2.

The ICL generalization error on test data distribution D′ and test task f ∈ T ′:
RICL,xquery∼D′,f ∈T ′(Ψ) = Exquery∼D′ [1[zK = v ]].
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Data modeling

The training tasks are the transition between M orthogonal training-relevant (TRR) patterns
{µi}Mi=1. The testing tasks are the transition between M ′ testing-relevant (TSR) patterns
{µ′

i}M
′

i=1.

For a task f = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1,
The k-th step label of xquery is zk = fk(zk−1), z0 = xquery .
The k-th step label of the i-th context example xi is yi ,k = fk(yi ,k−1), yi ,0 = xi .

Positional encodings are orthogonal to TRR/TSR patterns.

Example: Task of "Country→ Capital → President": E1=(USA, Washington DC, Trump).
pquery=France. P = (E1,pquery ). Then, the label z1=Paris, z2=Macron. Each word
corresponds to a certain pattern µi .
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Data modeling

Training: All zk , yi ,k are chosen from TRR patterns {µi}Mi=1.
Testing: All zk , yi ,k are chosen from TSR patterns {µ′

i}M
′

i=1 plus a bounded noise. Testing
examples may contain erroneous steps, and we use transition matrices to characterize the error.

Step-wise transition matrix: Af
k is the transition matrix in the k-th step of the task f . The

correct output must be the most probable output by Af .
K -steps transition matrix: B f =

∏K
k=1 Af

k .

Example: correct paths are µ′
1 → µ′

1 → µ′
2,

µ′
2 → µ′

2 → µ′
1. Testing prompts may contain incorrect

paths like µ′
1 → µ′

1 → µ′
1. Step-wise transition matrices:

Af
1 =

(
0.6 0.4
0.4 0.6

)
, Af

2 =

(
0.4 0.6
0.8 0.2

)
. K -steps transition

matrix: B f =

(
0.56 0.44
0.64 0.36

)
.
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Data modeling

Important quantities:
The primacy ρf for Af and ρfo for B f : The gap between the correct reasoning and
incorrect reasoning of each step.
Min-max trajectory transition probability τ f : The minimum probability of the most
probable K-step reasoning trajectory over the initial TSR pattern.
Min-max input-label transition probability τ fo : The minimum probability of the most
probable output over the initial TSR pattern.

Example: Af
1 =

(
0.6 0.4
0.4 0.6

)
, Af

2 =

(
0.4 0.6
0.8 0.2

)
.

B f =

(
0.56 0.44
0.64 0.36

)
. Then, τ f = min{0.6 · 0.6, 0.6 · 0.8}

= 0.36, τ fo = min{0.56, 0.64} = 0.56.
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Theoretical Results
Define α and α′ as the fraction of context examples with input sharing the same TRR or TSR
pattern as the query input, respectively.

Theorem 1

For any ϵ > 0, as long as
1 the training tasks and samples are selected such that every TRR pattern is equally likely in

every inference step and in each training batch,
2 the number of examples in training prompts ltr ≥ Ω(α−1)

3 and the number of iterations T = Θ(α−2K 3 +MK (α−1 + ϵ−1)),
and the batch size B ≥ Ω(ϵ−2), then with a high probability, the loss of the returned model is
less than O(ϵ).

The required number of context examples is proportional to α−1.
The required numbers of iterations and samples increases as M, K 3 and α−2 increase.
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Theoretical Results

Theorem 2 (CoT generalization)

With a model trained as in Theorem 1, as long as
1 each TSR pattern µ′

i contains a non-trivial component in the span of the TRR pattern µi ,
2 the number of examples in testing prompts lts ≥ Ω((α′τ f ρf )−2),

then with a high probability, we have the CoT generalization error = 0.

Generalization with out-of-domain patterns can be successful if the testing data has a
strong correlation with training data.
A more informative prompt (larger α′) and more accurate inference examples (larger τ f

and ρf ) can reduce the required testing prompt length.
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Theoretical Results

Comparison with ICL:

We first propose Condition 1: the correct final output is the most probable final output by B f .
The previous condition does not satisfy this condition.

Theorem 3 (ICL generalization)
1 If condition 1 does not hold, then the ICL generalization error ≥ Ω(1).
2 If condition 1 holds, and lts ≥ Ω((α′τ fo ρ

f
o)

−2), we have the ICL generalization error = 0.

Because Condition 1 is not required for CoT generalization, CoT performs better than ICL if
Condition 1 fails.
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The Mechanism of CoT

1 When conducting the k-th step reasoning of the query, the trained model assigns
dominant attention weights on the prompt columns that are also the k-th step and share
the same TSR pattern as the query.

2 Then, the fraction of the correct TSR pattern is the largest in the output of each step to
generate the accurate output by greedy decoding.
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Experiments

Figure 3: CoT testing error with different α′. Figure 4: CoT testing error with different τ f . Figure 5: CoT testing error with different ρf .

More CoT testing examples are needed when α′, τ f , or ρf is small.
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Experiments

Figure 6: ICL testing error with different α′. Figure 7: ICL testing error with different τ f
o . Figure 8: ICL testing error with different ρfo .

More ICL testing examples are needed when α′, τ fo , or ρfo is small.

Hongkang Li February, 2025 20 / 28



Experiments

Whether increasing the number of context examples can improve the ICL performance
depends on whether Condition 1 holds, while CoT does not require this.
Two-stage training dynamics: 1, learn position information. 2, learn pattern information.

Figure 9: Comparison between CoT and ICL w./w.o.
Condition 1 Figure 10: Mechanism of Transformers for CoT
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Experiments

There exists at least one head in each layer of the Transformer that implements CoT as the
characterized mechanism.

(A) (B) (C)

Figure 11: Training dynamics of Transformers. (A) Layer 1, Head 2 (B) Layer 2 Head 2 (C) Layer 3 Head 2.
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Summary

This work provides the training dynamics analysis of nonlinear Transformer towards CoT
generalization on new tasks with noisy and partially inaccurate context examples.

This work also characterizes the requirements for a guaranteed CoT generalization with a
provable mechanism.

This work theoretically studies when CoT is better than ICL.
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Future Directions

Can the analysis of Chain-of-Thought or In-Context Learning be extended to
non-Transformer models, e.g., Mamba?
How can Transformers reason with limited Chain-of-Thought data?
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Future Direction I: Mamba

Mamba can be represented as linear attention plus nonlinear gating.

F (Ψ;P) =
l∑

i=1

G (i , l ;w)xlWCWBx⊤
i xi ,

where G (i , l ;w) =

{∏l
j=i+1(1 − σ(xjw))σ(xiw), i < l

σ(xlw), i = l .

(5)

Existing work [Park et al.24] shows that Mamba works better than Transformers in
ignoring fixed and prevalent outliers and parity problems by ICL.

Problem formulation: Consider a fixed backdoor attack v∗ that is possibly added to the
context inputs to generate a certain binary label. Train with backdoor-attacked examples.
Compare Mamba and Transformers.
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Future Direction I: Mamba

Our work plans to theoretically study the optimization dynamics and generalization of
Mamba compared with Transformers in ICL.
Mamba can be provably trained to defend the backdoor attack vector v∗ better than
Transformers due to the existence of the nonlinear gating.
The mechanism of Mamba is to attend to tokens that share the same relevant pattern
without the attack vector as the query and are located close to the query.

Figure 12: Mamba=linear Transformer+nonlinear gating.
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Future Direction II: Self-Taught

Recall CoT data is widely used in LLM training to improve performance.
We usually do not have enough CoT data with intermediate steps for training.
Self-Taught: Given D = {xi , yi}Ni=1, use the pretrained model M to generate intermediate
steps ri to form CoT data D ′ = {xi , ri , yi}Ni=1. Then, use D ′ to fine-tune M.

This work plans to theoretically study
(a) whether the model M can
generate correct intermediate steps;
(b) the generalization ability of
learning with generated CoT data.

Figure 13: Self-Taught. Figure from [Zelikman et al.23]
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Thank you!

Q & A
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