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-
Chain-of-Thought (CoT) in Large Language Model (LLM)

Chain-of-Thought (CoT) enables the reasoning ability of LLM by augmenting the query using
multiple examples with intermediate steps (few-shot) or necessary instructions (zero-shot).

(a) Few-shot
// B \
(Q: Roger has 5 tennis balls. He buys 2 more cans of tennis |
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

(b) Few-shot-CoT

/ Q Roger has 5 tennis balls. He buys 2 more cans of Ienn\
[ balls. Each can has 3 tennis balls. How many tennis balls does |
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

(Output) The answer is 8. X
\ /
AN S

(c) Zero-shot

(Output) The juggler can juggle 16 balls. Half of the balls are golf

\ balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are |

\blue. So there are 8/2 = 4 blue golf balls. The answeris 4./ _/
_

(d) Zero-shot-CoT

ﬂl: A juggler can juggle 16 balls. Half of the balls are golf balls, \
and half of the golf balls are blue. How many blue golf balls are
there?
A: The answer (arabic numerals) is

/Q: A juggler can juggle 16 balls. Half of the balls are golf balls, "\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) 8 X

\ )

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
\ are blue. That means that there are 4 blue golf balls. / J

Figure 1: Few-shot and zero-shot CoT [Kojima et al.22]
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-
Chain-of-Thought (CoT) in Large Language Model (LLM)

Besides testing, high-quality CoT data is also beneficial in LLM training.
@ Process supervision [Lightman et al.24] with CoT data outperforms outcome supervision.
@ CoT+RL is crucial for training GPT-o1.

. —

% Problems Solved (Best-of-N)
3

64 —— Process-Supervised RM
—— Outcome-Supervised RM
62 —— Majority Voting

10t 102 10%
N = number of solutions per problem



Our focus

Despite the empirical success of Chain-of-Thought, one fundamental and theoretical question
remains less explored, i.e.,

Why can a Transformer be trained to generalize on multi-step
reasoning tasks via CoT?



Related Theoretical Works and Background

Existing works focus on the expressive power of Transformer in implementing CoT.
[Li et el.23]:

@ Transformers can learn MLP functions by CoT.

o CoT=filtering + In-Context Learning (ICL). Filtering: attends to the relevant token. ICL
Use the filtered tokens to generate the output.

[Feng et al.23, Li et al.24]:

o Without CoT, Transformers can only solve limited problems unless the model size grows
super-polynomially w.r.t. the sequence length.

@ Transformers of constant size can be constructed to solve arithmetic/equation/Dynamic
Programming tasks via CoT.

Hongkang Li
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Related Theoretical Works and Background

Only a concurrent work, [Wen et al.25], provides the convergence and sample complexity

analysis of zero-shot CoT using Transformers for sparse parity tasks: Given a length-n binary
sequence, produce the XOR output of k selected entries.

@ Learning using one-layer Transformers requires exponential to k samples without CoT
when the number of parameters is limited.

@ One-layer Transformers can provably learn sparse parity by CoT with almost linear samples
with respect to k and n.

7 _ —
No CoT  0,1,0,1,0, 0 , 0 €{0,1}7, asb @b, ®bs=0®161=0.

input [EOS] answer

With CoT  0,1,0,1,0, 0 0,1, 0 & {0,1}% asb; = 0,b; @by = 1.
—_—— N N
input [EOS] coT @answer

Figure 2: CoT for the sparse parity problem [Wen et al.25]
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Our work and major contributions

Our recent work "Training Nonlinear Transformers for Chain-of-Thought Inference: A
Theoretical Generalization Analysis"! accepted by ICLR 2025 has the following contributions.

@ A quantitative analysis of how the training can enable the CoT ability with nonlinear
Transformers.

@ A quantitative analysis of how context examples affect CoT performance.

@ A theoretical characterization of when and why CoT outperforms ICL.

Thttps: //openreview.net/forum?id=n7n8McETXw


https://openreview.net/forum?id=n7n8McETXw

Problem formulation

Consider learning K-steps reasoning tasks f = fx o fi_1 0 --- 0 f o f; with few-shot CoT.

. X; i1 Yik—1) -
P = (E,E,, - ,E,, Q) as the training prompt, where E; = < P it Yi.K 1> is the
yir Yi2 - Yik
. Zo 21 - Zk—o Zk—1) . : :
i-th context example, Q, = < 0“1 k=2 2k=11) s the first k steps of the reasoning
zZ1 2Zp - Zk_1 0

query for any k in [K].
@ The label for prediction is z, for the k-th step, denoted as z for P.

@ Denote each column of P as p;. Add the positional encoding ¢; (periodic) to each p; to
obtain p; = p; + € mod K)-



Problem formulation

Learning model with W = { W), Wo, Wy }:
len(P)—1

f(\lf P Z W\/p,SO'thaX((WKP;) WQPquery) (1)
i=1

Model Training: Following theoretical works [Li et el.23, Feng et al.23, Li et al.24], we use

CoT data for model training. Given the training set {P",z"}N_, we train the model with
empirical risk minimization.

min Ry(V) : NZM}P (2)

@ The query and context inputs are sampled from a distribution D.
@ The task " is sampled from a distribution 7. The training tasks form a set 7, C 7.
o ((W;P" z") =1/2-||z" — f(W; p")||? is the squared loss.
@ The model is trained via stochastic gradient descent (SGD).
February, 2025 9/28



Problem formulation

Chain-of-Thought Inference:

The testing prompt P = (Ej, E, - -

0

X .
-, El, Pquery), Where pguery = ( q“ery>. Predict {zk}le.
Let Py = P, Py be the columns of P before the query. In the k-th step inference,

o Generate vy as the most probable output from the set ) of all possible outputs (greedy
decoding):

1
Vi :arglrpé£1}§||F(\U;P)—u||2. (3)

@ Use vy to update Py and construct Py 1:

Pe= (Pt ()P = (P () (@

The CoT generalization error on test data distribution D and test task f € T":
1 K
RCOTquueryN'D/,feTl(\U) = ]ExqueryND,[? Zk:]_ :H.[Zk = Vk]]'
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Problem formulation
In-Context Learning Inference:
The testing prompt P = (Ey, Ez, - - - , Ej,., Pquery), Where pguer, = (quéery>’ and

E = ( xi 0 .- 0> is the i-th context example. Predict zk.
yik 0 < 0
Generate the output v = arg minycy 3||F(V; P) — ul|.

The ICL generalization error on test data distribution D’ and test task f € T":
RICL»XqueryND/afeT/(\u) = ]ExqueryND/[]]‘[zK = V]]

Hongkang Li
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-
Data modeling

The training tasks are the transition between M orthogonal training-relevant (TRR) patterns
{mi}M,. The testing tasks are the transition between M’ testing-relevant (TSR) patterns
{m ,I‘\i’l-
Foratask f =fxofx_10---0ofhoff

o The k-th step label of Xquery is zx = fi(zk—1), 20 = Xquery-

@ The k-th step label of the i-th context example x; is y; x = fi(¥ik—1), Yio = Xi.
Positional encodings are orthogonal to TRR/TSR patterns.
Example: Task of "Country— Capital — President": E;=(USA, Washington DC, Trump).

Pquery=France. P = (Ey, pguery). Then, the label zy=Paris, zz=Macron. Each word
corresponds to a certain pattern p;.



-
Data modeling

Training: All zy, y; x are chosen from TRR patterns {u;}M,.
Testing: All z, y; « are chosen from TSR patterns {p/ ,-Aill plus a bounded noise. Testing
examples may contain erroneous steps, and we use transition matrices to characterize the error.

@ Step-wise transition matrix: A,’i is the transition matrix in the k-th step of the task f. The
correct output must be the most probable output by Af.

o K-steps transition matrix: Bf = [[f_, Af.

Example: correct paths are pf — pf — pb,
wh — ph — pfy. Testing prompts may contain incorrect
paths like pf — p} — pj. Step-wise transition matrices:

0.6 0.4 0.4 0.6
f — f f— _ ..
A, = <0.4 0.6)’ A, = <0.8 02). K-steps transition

matrix: Bf = <0'56 0'44).

0.64 0.36



-
Data modeling

Important quantities:

o The primacy pf for A and p! for Bf: The gap between the correct reasoning and
incorrect reasoning of each step.

e Min-max trajectory transition probability 7*: The minimum probability of the most
probable K-step reasoning trajectory over the initial TSR pattern.

e Min-max input-label transition probability 7£: The minimum probability of the most
probable output over the initial TSR pattern.

0.6 0.4 04 0.6
: f = f = Step 1 Step 2
Example: Ay <o.4 0.6>’ A (o.s o.z)‘ - -
Bf — (822 8;‘2) Then, 77 = min{0.6 - 0.6,0.6 - 0.8}

= 0.36, 7/ = min{0.56,0.64} = 0.56.




Theoretical Results

Define o and o' as the fraction of context examples with input sharing the same TRR or TSR
pattern as the query input, respectively.

Theorem 1

For any € > 0, as long as
@ the training tasks and samples are selected such that every TRR pattern is equally likely in
every inference step and in each training batch,
@ the number of examples in training prompts Iy, > Q(a™1)
© and the number of iterations T = ©(a2K3 + MK(a~ ! + 1)),
and the batch size B > Q(e~2), then with a high probability, the loss of the returned model is
less than O(e).

@ The required number of context examples is proportional to a 1.

@ The required numbers of iterations and samples increases as M, K3 and a2 increase.



Theoretical Results

Theorem 2 (CoT generalization)

With a model trained as in Theorem 1, as long as

@ each TSR pattern p; contains a non-trivial component in the span of the TRR pattern p;,
@ the number of examples in testing prompts s > Q((o/7f pf)7?),

then with a high probability, we have the CoT generalization error = Q.

@ Generalization with out-of-domain patterns can be successful if the testing data has a
strong correlation with training data.

o A more informative prompt (larger a’) and more accurate inference examples (larger 7F
and pf) can reduce the required testing prompt length.




Theoretical Results

Comparison with ICL:

We first propose Condition 1: the correct final output is the most probable final output by Bf.
The previous condition does not satisfy this condition.
Theorem 3 (ICL generalization)

@ If condition 1 does not hold, then the ICL generalization error > Q(1).

@ If condition 1 holds, and s > Q((o/7pf)~2), we have the ICL generalization error = 0.

Because Condition 1 is not required for CoT generalization, CoT performs better than ICL if
Condition 1 fails.



N
The Mechanism of CoT

l largest fraction
—
greedy decoding

same TSR, same step  diff. TSR diff. step

Attn: 0.3 03 03 0 32 OTOZ
t t t ~N /S
Wy A
step: 1 2 1 2 12 1

12 N
b b B B B
Hafz 3 M Ha ps Bapp B3 Ms i Me Mt f |
query

Context examples of 2-steps reasoning labels: py, pp

@ When conducting the k-th step reasoning of the query, the trained model assigns
dominant attention weights on the prompt columns that are also the k-th step and share
the same TSR pattern as the query.

@ Then, the fraction of the correct TSR pattern is the largest in the output of each step to
generate the accurate output by greedy decoding.



Experiments
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Figure 3: CoT testing error with different o’. Figure 4: CoT testing error with different - Figure 5: CoT testing error with different pf.

More CoT testing examples are needed when o/, 7t or pf is small.
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Experiments
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Figure 6: ICL testing error with different o Figure 7: ICL testing error with different T‘C. Figure 8: ICL testing error with different pg.

More ICL testing examples are needed when o/, T(f, or pg is small.
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Experiments

@ Whether increasing the number of context examples can improve the ICL performance
depends on whether Condition 1 holds, while CoT does not require this.
@ Two-stage training dynamics: 1, learn position information. 2, learn pattern information.

10° 1.0 =
Q .
=4 .
© .
5 00811
2 e
o 1071t k= 0.6 3/ — same TSR, same step
o = F same TSR, diff. step
] -g — - diff. TSR, same step
o 2 04470 . diff. TSR, diff. step
F102ec s |
=& |CL w. Condition 1 £0.2 \
—— ICL w.o. Condition1 | g N
0 20 40 60 80 100 < oo b T
# of context examples "0 200 400 600 800 1000
Iterations

Figure 9: Comparison between CoT and ICL w./w.o.
Condition 1

Figure 10: Mechanism of Transformers for CoT



Experiments

There exists at least one head in each layer of the Transformer that implements CoT as the

characterized mechanism.

Attention weight in average
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Figure 11: Training dynamics of Transformers. (A) Layer 1, Head 2 (B) Layer 2 Head 2 (C) Layer 3 Head 2.
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Summary

@ This work provides the training dynamics analysis of nonlinear Transformer towards CoT
generalization on new tasks with noisy and partially inaccurate context examples.

@ This work also characterizes the requirements for a guaranteed CoT generalization with a
provable mechanism.

@ This work theoretically studies when CoT is better than ICL.



Future Directions

@ Can the analysis of Chain-of-Thought or In-Context Learning be extended to
non-Transformer models, e.g., Mamba?

@ How can Transformers reason with limited Chain-of-Thought data?



Future Direction |: Mamba

@ Mamba can be represented as linear attention plus nonlinear gating.
I
F(wv P) — Z G(I, /; W)X/WCWBX,'TXi,
o . ()
where G(i,l; w) = [Tj=is1(1 = o(xw))o(xiw), I <
o(xw), Pi=1

o Existing work [Park et al.24] shows that Mamba works better than Transformers in
ignoring fixed and prevalent outliers and parity problems by ICL.

Problem formulation: Consider a fixed backdoor attack v, that is possibly added to the
context inputs to generate a certain binary label. Train with backdoor-attacked examples.
Compare Mamba and Transformers.



Future Direction |: Mamba

@ Our work plans to theoretically study the optimization dynamics and generalization of
Mamba compared with Transformers in ICL.

@ Mamba can be provably trained to defend the backdoor attack vector v, better than
Transformers due to the existence of the nonlinear gating.

@ The mechanism of Mamba is to attend to tokens that share the same relevant pattern
without the attack vector as the query and are located close to the query.

..........

[Terd-| || s 1
D
- + o I+ i
X; | S|
[em- |2

(a) SSM in Mamba (b) Single Head Linear Attention

Figure 12: Mamba=linear Transformer+nonlinear gating.



.
Future Direction |I: Self-Taught

@ Recall CoT data is widely used in LLM training to improve performance.

@ We usually do not have enough CoT data with intermediate steps for training.

o Self-Taught: Given D = {x;,y;} ", use the pretrained model M to generate intermediate
steps r; to form CoT data D' = {x;, r,-,y,-}fvzl. Then, use D’ to fine-tune M.

This work plans to theoretically study
(a) whether the model M can Lo G

-
Mod
generate correct intermediate steps;
(b) the generalization ability of
learning with generated CoT data.

nnnnn

Rationalize’

Figure 13: Self-Taught. Figure from [Zelikman et al.23]




Thank you!

Q& A
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