
Theoretical Foundations of In-Context Learning and Chain-of-Thought
Using Properly Trained Transformer Models

Presenter: Hongkang Li

Hongkang Li October, 2024 1 / 39



Development of deep learning

Take the area of NLP as an example.

Figure 1: Deep Learning paradigm1

1source from [Zhao et al.23]
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Large Language Model (LLM) and In-context learning (ICL)

Transformer-based foundation models, e.g., ChatGPT, GPT-4, Sora, have achieved great
empirical success in many areas.
Large foundation models are able to implement in-context learning (ICL) and reasoning.

Figure 2: GPT-4. Source from medium Figure 3: Sora. Source from medium
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Large Language Model (LLM) and In-context learning (ICL)

In-context learning makes predictions for new tasks on pre-trained LLM without
fine-tuning the model.
It is implemented by providing a few testing examples and necessary instructions as a
prompt for the testing data.

Figure 4: Machine Translation with ICL
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Our focus

Despite the empirical success of ICL, one fundamental and theoretical question for ICL is less
investigated, i.e.,

How can a Transformer be trained to perform ICL and
generalize in and out of domain successfully and efficiently?

Specifically,
What are the sufficient conditions for out-of-domain ICL?
What is the mechanism of ICL?
Can we prune the model in in-context inference and why?
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Related works

[Garg et al.22,Akyurek et al. 23] propose a framework for studying ICL on linear regression.
Consider a prompt P = (x1, f (x1), x2, f (x2), · · · , xquery ). f is a linear function.
We say a model M can in-context learn f with up to an ϵ error to predict f (xquery ), if

EP [ℓ(M(P), f (xquery ))] ≤ ϵ. (1)

The model M parameterized by Θ is trained by minimizing the risk function

min
Θ

EP,f [ℓ(MΘ(P
i ), f (x iquery ))]. (2)

Results: the trained Transformer is able to learn unseen linear functions from in-context
examples with performance comparable to the optimal least square estimator.
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Related works

A few further works theoretically study the training dynamics and generalization of
Transformers in implementing ICL.

[Zhang et al.24,Wu et al.24] study linear regression tasks on {(xn, f (xn))}Nn=1, where f is
a linear function, using the prompt

P =

(
x1 x2 · · · xl xquery

f (x1) f (x2) · · · f (xl) 0

)
∈ R(d+1)×(l+1). (3)

The training model they consider is a one-layer Transformer with linear attention,

F (P; Θ) = P +W PVP · P⊤WKQP. (4)

[Zhang et al.24] further study the generalization when the data/task distribution shift
exists; [Wu et al.24] characterize the required number of pretraining tasks for ICL.
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Related works

Given the prompt in (3), [Huang et al.24] explore a one-layer Transformer with softmax
attention on learning linear regression tasks, i.e.,

F (P; Θ) =
N∑
i=1

yi softmax(x⊤i Θxquery ) (5)

[Huang et al.24] consider xi as orthogonal features, following the line of feature-learning
analysis.
[Huang et al.24] in-depth characterize the dynamics of the training process under cases of
balanced and imbalanced prompt examples.
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Related works

Some other works also study the mechanism of ICL implemented by Transformers.

Transformer=GD: [von Oswald et al.23] finds
that a one-layer Transformer can implement
one-step gradient descent via in-context
inference. Further works [Ahn et el.23,Cheng
et al.24] extend the conclusion to
preconditioned GD and functional GD given
different settings.

Induction head [Olsson et al.22]:
Transformers find the answer from the prefix to
generate the next token.
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Our work and major contributions

Our recent work "How Do Nonlinear Transformers Learn and Generalize in In-Context
Learning?"2 at ICML 2024 has the following contributions.

A theoretical characterization of how to train Transformers with nonlinear attention and
nonlinear MLP and to enhance their ICL capability.

Expand the theoretical understanding of the mechanism of the ICL capability of
Transformers.

Theoretical justification of Magnitude-based Pruning in preserving ICL.

2https://arxiv.org/pdf/2402.15607.pdf
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Our work and major contributions

Summary of contributions and comparisons with related theoretical works.

Theoretical
Works

Nonlinear
Attention

Nonlinear
MLP

Training
Analysis

Distribution
-Shifted Data

Tasks

[Zhang et al.24] ✓ ✓ linear regression
[Huang et al.24] ✓ ✓ linear regression
[Wu et al.24] ✓ linear regression

Ours ✓ ✓ ✓ ✓ classification

Table 1: Comparison with existing works about training analysis and generalization guarantee of ICL
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Problem formulation

We study binary classification problems. Given the input xquery , we aim to predict the label
f (xquery ) for the task f . We conduct training with constructed prompts P on a model to
enable ICL.

P =

(
x1 x2 · · · xl xquery
y1 y2 · · · yl 0

)
:= (p1,p2, · · · ,pquery ). (6)

xi and yi are context inputs and outputs, respectively.
yi = embedding(f (xi )) is an embedding of f (xi ). yi = q if f (xi ) = +1. yi = −q if
f (xi ) = −1.
We also name the parts of x and y as feature embedding and label embedding in P,
respectively
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Problem formulation

Learning model: a single-head, one-layer Transformer with a self-attention layer and a
two-layer perceptron, i.e.,

F (Ψ;P) = a⊤Relu(WO

l∑
i=1

WVpi · attn(Ψ;P, i)),

attn(Ψ;P, i) = softmax((WKpi )
⊤WQpquery )

(7)

Figure 5: The Transformer network for learning
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Problem formulation

Model training: The training is to solve the empirical risk minimization using N pairs of
prompt and labels {Pn, zn}Nn=1, Ψ = {WQ ,WK ,WV ,WO , a},

min
Ψ

RN(Ψ) :=
1
N

N∑
n=1

ℓ(Ψ;Pn, zn) (8)

The query and context inputs are sampled from a distribution D.
The task f n is sampled from a distribution T . The training tasks form a set Ttr ⊂ T .
ℓ(Ψ;Pn, zn) = max{0, 1 − zn · F (Ψ,Pn)} is the Hinge loss.
The model is trained via stochastic gradient descent (SGD).
WQ , WK , and WV initialized from a small scaling of identity matrices. WO initialized
from Gaussian distribution.
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Problem formulation

Generalization: We introduce in-domain and out-of-domain generalization.
In-domain generalization: No distribution shift between training and testing data. The
generalization error is defined as

E
xquery∼D,f ∈T \Ttr

[ℓ(Ψ;P, z)]. (9)

Out-of-domain generalization: The testing queries follow D′ ̸= D, and the testing tasks
follow T ′ ̸= T . The generalization error is defined as

E
xquery∼D′,f ∈T ′

[ℓ(Ψ;P, z)]. (10)
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Problem formulation
Model pruning:

Let S ∈ [m] be the index set of WO neurons.
Pruning neurons in S: removing corresponding rows of the trained WO .

Figure 6: Pruning on WO .
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Formulating data and tasks

In-domain data and tasks:
Given {µj}M1

j=1 as in-domain relevant (IDR) patterns, each in-domain data x = µj + noise.
Each task is defined based on one pair of µa and µb. f (x) = +1 (or −1) if the IDR
pattern of x is µa (or µb). f (x) is a random label in other cases.

Out-of-domain data and tasks: Defined on out-of-domain relevant (ODR) patterns {µ′
j}

M′
1

j=1.

Prompt construction: For the task on µa and µb, with
a probability of α/2, select examples of µa and µb. α
represents the fraction of task-relevant examples in the
prompt. Replace α with α′ if it is a testing task.

Figure 7: Example of prompt, α = 2/3.
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Main theoretical results

Theorem 1 (In-domain generalization)

For any ϵ > 0, as long as
1 the training tasks Ttr uniformly cover all the IDR patterns and labels with

|Ttr |/|T | ≥ (M1 − 1)−1/2, which means training a small fraction of the total tasks is
sufficient,

2 the lengths of training and testing prompts ltr ≥ Ω(α−1), lts ≥ α′−1,
3 the number of iterations T = Θ(α−2/3),

and the batch size B ≥ Ω(max{ϵ−2,M1), then with a high probability, the in-domain
generalization error of the returned model is less than O(ϵ).
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ICL mechanism by the trained transformer

Proposition 1

W (T )
Q and W (T )

K mainly project context inputs to the IDR or ODR pattern.
After training, attention weights become concentrated on contexts that share the same
IDR/ODR pattern as the query. (induction head)

Figure 8: The magnitude of the trained attention layer.
xdr: IDR or ODR pattern of pquery .

Figure 9: The attention weight summation
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ICL mechanism by the trained transformer

Proposition 2

The feature embedding of rows of W (T )
O W (T )

V approximate µ̄, i.e., the average of IDR
patterns.

The label embedding of rows W (T )
O W (T )

V approximate q for positive neurons and −q for
negative neurons.

Figure 10: The feature embedding of WOWV . bar:
iteration

Figure 11: The label embedding of WOWV . bars:
iterations
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Main theoretical results

Consider each ODR pattern as a linear combination of IDR patterns. Denote S1 as the
summation of the linear coefficients.

Theorem 2 (Out-of-domain generalization)

Suppose that the conditions (1) to (3) in Theorem 1 hold. If a constant order of S1 ≥ 1 and
lts ≥ α′−1, then with a high probability, the out-of-domain generalization error of the returned
model is less than O(ϵ).
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Main theoretical results

Theorem 3 (Model pruning)

There exists a constant fraction of MLP-layer neurons of WO with large weights, while the
remaining have small weights.

Pruning all neurons with small weights leads to a generalization error O(ϵ+M
−1/2
2 ),

which is almost the same as without pruning.
Pruning an R fraction of neurons with large weights results in a generalization error
greater than Ω(R).

Hongkang Li October, 2024 22 / 39



Numerical experiments

Verifying the sufficient conditions for out-of-domain generalization.
S1 ≥ 1 is needed for a desired out-of-domain generalization.
The required length of testing prompts decreases as α′ increases.

Figure 12: Out-of-domain ICL classification error on
GPT-2 with different S1

Figure 13: Out-of-domain ICL classification error on
GPT-2 with different α′
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Numerical experiments

Magnitude-based model pruning for out-of-domain ICL inference.

Figure 14: Out-of-domain classification error with model
pruning of the trained WO and the magnitude of WO
neurons.

Figure 15: Out-of-domain classification error with
different α′
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Summary

This work provides theoretical analyses of the training dynamics of Transformers with
nonlinear attention and nonlinear MLP, and the resulting ICL capability for new tasks with
possible data shift.

This work also provides a theoretical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability.

This work provably characterizes the mechanism of ICL implemented by a single-head,
one-layer Transformer.
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Further exploration in LLM reasoning ability
Chain-of-Thought (COT)

Figure 16: Few-shot COT [Wei et al.22]

Relationship with ICL: prompting multiple intermediate steps of reasoning.
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Further exploration in LLM reasoning ability

Existing works focus on the expressive power of Transformer in implementing COT.
[Li et el.23]: COT=Filtering+ICL.
[Feng et al.23,Li et al.24]: Transformers can be constructed to solve many reasoning
problems via COT.
[Yang et al.24]: Linear Transformers can be more efficient than softmax Transformers in
some dynamic programming tasks.

Problems to solve in our recent work3:
How can a Transformer be trained to perform COT?
When is COT better than ICL?
Generalization with Data/Task distribution shift.

3https://arxiv.org/pdf/2410.02167
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Further exploration in LLM reasoning ability
Problem formulation

Consider training on K -steps reasoning tasks f = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1.

P = (E1,E2, · · · ,Eltr ,Qk) as the training prompt, where Ei =

(
xi yi ,1 · · · yi ,K−1
yi ,1 yi ,2 · · · yi ,K

)
is the

i-th context example, Qk =

(
z0 z1 · · · zk−2 zk−1
z1 z2 · · · zk−1 0

)
is the first k steps of the reasoning

query for any k in [K ]. The label for prediction is zk . Denote each column of P as pi . Add the
positional encoding ci (periodic) to each pi to obtain p̃i = pi + c(i mod K).

Learning model:

f (Ψ;P) =

len(P)−1∑
i=1

WV p̃i softmax((WK p̃i )
⊤WQ p̃query ) (11)

Given training set {Pn, zn}Nn=1. The loss is squared loss.
Hongkang Li October, 2024 28 / 39



Further exploration in LLM reasoning ability

Problem formulation

The testing prompt P = (E1,E2, · · · ,Elts ,pquery ), where pquery =

(
xquery

0

)
.

CoT inference: Feed the current prompt to the model to generate the most probable output v
(greedy decoding), and then we put v at the end of P to form the new prompt.

CoT Generalization error: the average error in each inference step E[ 1
K

∑K
k=1 1[zk ̸= vk ]],

ICL inference: Ei =

(
xi 0 · · · 0

yi ,K 0 · · · 0

)
is the i-th context example. The ICL generalization

error: E[1[zk ̸= v ]].
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Further exploration in LLM reasoning ability

Data modeling
The training tasks are the transition between M training-relevant (TRR) patterns µi . The
testing tasks are the transition between M ′ testing-relevant (TSR) patterns µ′

i .

Testing examples contain erroneous steps, and transition matrices characterize the transition.
Examples: correct paths are µ′

1 → µ′
1 → µ′

2, µ
′
2 → µ′

2 → µ′
1. Step-wise transition matrices:

Af
1 =

(
0.6 0.4
0.4 0.6

)
, Af

2 =

(
0.4 0.6
0.8 0.2

)
. K -steps transition matrix: B f =

(
0.56 0.44
0.64 0.36

)
. τ f :

min-max trajectory transition probability, τ f = 0.36. τ fo : min-max input-label transition
probability, τ fo = 0.56.
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Further exploration in LLM reasoning ability

Theoretical Results
Define α and α′ as the fraction of context examples with input sharing the same TRR and TSR
pattern as the query input, respectively.

Theorem 4
For any ϵ > 0, as long as

1 the training tasks and samples are selected such that every TRR pattern is equally likely in
every inference step and in each training batch,

2 the length of training prompts ltr ≥ Ω(α−1)

3 and the number of iterations T = Θ(α−2K 3 +MK (α−1 + ϵ−1)),
and the batch size B ≥ Ω(ϵ−2), then with a high probability, the loss of the returned model is
less than O(ϵ).
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Further exploration in LLM reasoning ability

Theoretical Results

Theorem 5 (CoT generalization)

As long as
1 each TSR pattern µ′

i is a linear combination of all the TRR pattern µi ,
2 the length of testing prompts lts ≥ Ω((α′τ f )−2)

then with a high probability, we have the CoT generalization error = 0.

A more informative prompt (larger α′) and more accurate inference examples (larger τ f ) can
reduce the required testing prompt length.
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Further exploration in LLM reasoning ability
Theoretical Results

Comparison with ICL:

We first propose Condition 1: the correct final output is the most probable output by B f . The
previous condition does not satisfy this condition.

Theorem 6 (ICL generalization)
1 If condition 1 does not hold, then the ICL generalization error ≥ Ω(1).
2 If condition 1 holds, and lts ≥ Ω((α′τ fo )

−2), we have the ICL generalization error = 0.

Because Condition 1 is not required for CoT generalization, CoT performs better than ICL if
Condition 1 fails.
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Further exploration in LLM reasoning ability
CoT Mechanism

1 When conducting the k-th step reasoning of the query, the trained model assigns
dominant attention weights on the prompt columns that are also the k-th step and share
the same TSR pattern as the query.

2 Then, the fraction of the correct TSR pattern is the largest in the output of each step to
generate the accurate output by greedy decoding.
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Further exploration in LLM reasoning ability

Experiments

Figure 17: CoT testing error with different α′ Figure 18: CoT testing error with different τ

More testing examples are needed when α′ or τ f is small.
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Further exploration in LLM reasoning ability

Experiments

Figure 19: Comparison between CoT and ICL w./w.o.
Condition 1 Figure 20: Mechanism of Transformers for CoT
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Further exploration in LLM reasoning ability

Summary

This work provides the training dynamics analysis of nonlinear Transformer towards CoT
generalization.

This work also characterizes the requirements for a guaranteed CoT generalization with a
provable mechanism.

This work theoretically studies when CoT is better than ICL.
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Future Directions

Some interesting high-level insights:
The low dimensionality of language data leads to the following results of Transformers.

1 Induction Head: Concentrated attention+copying in in/Out-of-domain inference.
2 Sparsity: Neurons only learn a few patterns.

The reason why CoT works is CoT can do “matching and copying” rather than learning any
“logic” from data.

Future directions:
What is the mechanism of ICL/CoT in more general generation tasks?
Can CoT learn a more complicated reasoning structure provably?
Does CoT really make inferences by copying known tokens instead of from any logic that
CoT learns?
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Thank you!

Q & A
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Proof idea of Theorem 1

Analytical Framework: Feature learning
1 Assuming a mapping from different patterns to different labels.
2 Characterize the gradient updates, which will be proven to be significant in the directions

of patterns that determine the labels.
3 The accumulated gradient updates will lead to different types of trained neurons, which

have different impacts on learning.

High-level idea to prove Theorem 1
1 Characterize the gradient updates of WQ , WK , WV , and WO in terms of IDR patterns.
2 We show the model makes attention weights converge to 1 between the same IDR

patterns and the MLP layer makes predictions based on the label embedding.
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Proof idea of Theorem 1
Self-attention layer

1 Consider zn = 1, ai > 0, 1[·] = 1 (“lucky” neurons, will be introduced later), which gives a
positive gradient gain of the last two rows.

2 If the attention weights between pn
s and pn

query is large with pn
s sharing the same IDR

pattern as pn
query , then −grad(WQ) · pquery ∝ pquery approximately as desired.
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Proof idea of Theorem 1
Self-attention layer

1 If the attention weights between pn
s and pn

r is large with pn
s sharing the same IDR pattern

as pn
r , then −grad(WK ) · pr ∝ pr approximately as desired.

2 Combining the result of WQ , this will in turn enlarge the attention weights between pn
query

and pn
s of the same IDR pattern. An induction can prove this process.
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Proof idea of Theorem 1

What does the attention layer imply from the gradient update?

The weighted summation of pn
s with attention as coefficients has the following property.

1 The feature embedding part will be close to the IDR pattern of pn
query , while the IDI

pattern is filtered out.
2 The label embedding part will be close to the label of pn

s that shares the same IDR pattern
as pn

query . This implies that it will be great if WOWV makes predictions only based on the
label embedding. In fact, it is true!
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Proof idea of Theorem 1

MLP layer (WV included. It is highly correlated with WO .)

1 The projection of Grad(WV ) onto different IDR patterns replies on WO(i,·) for different i .
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Proof idea of Theorem 1

MLP layer

How to formulate different WO neurons?

We characterize “lucky neurons”, i.e., some rows of WO , which are initialized such that at the
beginning of the training, the indicator function
1[WO

∑
s(WVps)softmax(p⊤

s W⊤
K WQpquery ) ≥ 0] is activated. See definition D.8.

Properties of lucky neurons
1 The fraction of lucky neurons ≥ Ω(1).
2 During the training, the label embedding becomes approximately in the direction of q or

−q for ai > 0 or ai < 0, respectively.
3 The feature embedding gradually becomes the average of IDR patterns along the training.
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Proof idea of Theorem 1

MLP layer

1 We can use an induction to prove the gradient update by combining the changes of WV .
2 Lucky neurons of +q will grow approximately in the direction of WVps of +q, which

further enhances such a direction. The same for lucky neurons of −q.
3 Unlucky neurons has small weights due to unstable ai and 1[·].
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Proof idea of Theorem 1

To sum up

1 Attention weights between the same IDR pattern, i.e., µ1 + 0.2v3 and µ1 − 0.3v5, become
dominant, resulting in a weighted summation close to (µ⊤

1 ,q
⊤)⊤.

2 Lucky neurons are proved to be either (µ̄⊤,q⊤)⊤ or (µ̄⊤,−q⊤)⊤. This leads to a correct
prediction given (µ⊤

1 ,q
⊤)⊤ as the input.
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Proof idea of Theorem 2

1 Each ODR pattern as a linear combination of IDR patterns: ensure Proposition 1 still
holds for ODR patterns.

2 S1 ≥ 1 allows the lucky neurons still activated: Approximately,

W (T )
O W (T )

V (µ′
1
⊤
,q⊤) ≈µ̄⊤µ′

1 + q⊤q

=µ̄⊤
M∑
i=1

ciµi + q⊤q

=
M∑
i=1

ci µ̄
⊤µi + q⊤q

≥µ̄⊤µ1 + q⊤q

(12)
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).
Each attention layer selects contexts with the same IDR pattern as the query.

Figure 21: Layer 1 self-attention Figure 22: Layer 2 self-attention Figure 23: Layer 3 self-attention
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).
The magnitude of the majority of neurons increases along the training.
The angle changes still hold for one of the layers.

Figure 24: Layer 1 self-attention Figure 25: Layer 2 self-attention Figure 26: Layer 3 self-attention
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Numerical experiments

Comparing ICL on a one-layer Transformer with other machine learning algorithms.

Figure 27: Binary classification performance of using
different algorithms, α′ = 0.8

Figure 28: Binary classification performance of using
different algorithms, α′ = 0.6

Logistic: logistic regression; SVM Gau.: SVM with Gaussian kernel; SVM Lin.: SVM with
linear kernel; 1-NN: 1-nearest neighbor; 3-NN: 3-nearest neighbor.
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