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Development of deep learning

Take the area of NLP as an example.
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Figure 1: Deep Learning paradigm®

source from [Zhao et al.23]
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Large Language Model (LLM) and In-context learning (ICL)

@ Transformer-based foundation models, e.g., ChatGPT, GPT-4, Sora, have achieved great
empirical success in many areas.

o Large foundation models are able to implement in-context learning (ICL) and reasoning.

@ OpenAl

® GPT-4

Figure 2: GPT-4. S fr dil .
& ource from medium F/gure 3: Sora. Source from medium
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https://medium.com/@thedatabeast/exploring-the-updated-gpt-4-unveiling-new-features-and-capabilities-27070f9609b0
https://medium.com/@tarunag10/openais-latest-marvel-sora-transforms-text-into-terrifyingly-realistic-videos-2ef2808555c5

Large Language Model (LLM) and In-context learning (ICL)

@ In-context learning makes predictions for new tasks on pre-trained LLM without
fine-tuning the model.

@ It is implemented by providing a few testing examples and necessary instructions as a
prompt for the testing data.

f(xquery):ei
T

Pre-trained LLM

t t t 4 4 t
X1 f(x1) %3 f(x3) x3 f(x3) = Xquery
[cat, katze, dog, hund, apple, apfel, -+ egg]

N—— N

——
translation task  prompt
Figure 4: Machine Translation with ICL
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Our focus

Despite the empirical success of ICL, one fundamental and theoretical question for ICL is less
investigated, i.e.,

How can a Transformer be trained to perform ICL and
generalize in and out of domain successfully and efficiently?

Specifically,
@ What are the sufficient conditions for out-of-domain ICL?
o What is the mechanism of ICL?

@ Can we prune the model in in-context inference and why?

e P YES



Related works

[Garg et al.22, Akyurek et al. 23] propose a framework for studying ICL on linear regression.
o Consider a prompt P = (x1, f(x1),x2, f(x2)," - , Xquery)- f is a linear function.

e We say a model M can in-context learn f with up to an e error to predict f(Xguery), if
EP[K(M(P)) f(Xquery))] <e (1)
@ The model M parameterized by © is trained by minimizing the risk function

m@in EP,f[E(M@(Pi)v f(XcI';uery))]' (2)

@ Results: the trained Transformer is able to learn unseen linear functions from in-context
examples with performance comparable to the optimal least square estimator.
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Related works

A few further works theoretically study the training dynamics and generalization of
Transformers in implementing ICL.

o [Zhang et al.24, Wu et al.24] study linear regression tasks on {(xn, f(xs))}"_;, where f is
a linear function, using the prompt

X1 X2 X| Xquer: d+1)x(/+1
P = query ) ¢ RUA+1)x(1+1), 3
<f(x1) f(xx) - f(x) 0 > (3)

The training model they consider is a one-layer Transformer with linear attention,
F(P;©)=P+WFPVP.PTWHKeP, (4)

@ [Zhang et al.24] further study the generalization when the data/task distribution shift
exists; [Wu et al.24] characterize the required number of pretraining tasks for ICL.
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Related works

Given the prompt in (3), [Huang et al.24] explore a one-layer Transformer with softmax
attention on learning linear regression tasks, i.e.,

N
F(P;©) = yisoftmax(x;' ©xquery) (5)

i=1

o [Huang et al.24] consider x; as orthogonal features, following the line of feature-learning
analysis.

@ [Huang et al.24] in-depth characterize the dynamics of the training process under cases of
balanced and imbalanced prompt examples.
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Related works

Some other works also study the mechanism of ICL implemented by Transformers.

Transformer=GD: [von Oswald et al.23] finds
that a one-layer Transformer can implement

—— Gradient descent

one-step gradient descent via in-context 02 + Trained Transformer

inference. Further works [Ahn et el.23, Cheng §G_1

et al.24] extend the conclusion to

preconditioned GD and functional GD given 0073 % w0

different settings. GD Steps / Transformer Layers
Induction heads implement the pattern [Al[B]...[A]-[B]

using prefix-matching and copying:

Induction head [Olsson et al.22]:
Transformers find the answer from the prefix to
generate the next token.

Repeat of Random Tc

Random Tokens kens
Category 40 ids node Sifiction Category 40 ids struction

prefix of attended-to-token n is copied. The corresponding
current token

the next token

Atte
Togit is
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Our work and major contributions

Our recent work "How Do Nonlinear Transformers Learn and Generalize in In-Context
Learning?"? at ICML 2024 has the following contributions.

@ A theoretical characterization of how to train Transformers with nonlinear attention and
nonlinear MLP and to enhance their ICL capability.

o Expand the theoretical understanding of the mechanism of the ICL capability of
Transformers.

@ Theoretical justification of Magnitude-based Pruning in preserving ICL.

Zhttps:/ /arxiv.org/pdf/2402.15607.pdf
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Our work and major contributions

Summary of contributions and comparisons with related theoretical works.

Theoretical Nonlinear Nonlinear Training  Distribution Tasks
Works Attention MLP Analysis  -Shifted Data
[Zhang et al.24] v v linear regression
[Huang et al.24] v v linear regression
[Wu et al.24] v linear regression
Ours v v v v classification

Table 1: Comparison with existing works about training analysis and generalization guarantee of ICL
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Problem formulation

We study binary classification problems. Given the input Xquer,, we aim to predict the label

f(Xquery) for the task f. We conduct training with constructed prompts P on a model to
enable ICL.

X1 X2 -+ X| Xquer
P = query | . - i
(yl Yo oy 0 > (Pla P2, ) pquery) (6)

@ x; and y; are context inputs and outputs, respectively.
e y; = embedding(f(x;)) is an embedding of f(x;). yi=q if f(x;) =+1. yj=—q if
f(X,') = —1.

@ We also name the parts of x and y as feature embedding and label embedding in P,
respectively

Hongkang Li
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Problem formulation

Learning model: a single-head, one-layer Transformer with a self-attention layer and a
two-layer perceptron, i.e.,

/
F(V; P) =a Relu(Wo Y~ Wyp; - attn(V; P, i), -
i=1

attn(V; P, i) = softmax((Wkp;) " Wopquery)

P11 >
softmax Relu
P2 — Wy
P Wy = Wy = a =F(¥;P)
Pz —~
pquery*' WQ
self-attention MLP

Figure 5: The Transformer network for learning
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Problem formulation

Model training: The training is to solve the empirical risk minimization using N pairs of
prompt and labels {P", z" ,’)’:1, V= {Wq, Wk, Wy, Wy, a},

1 N

min Ry(V) = NZ[(\IJ; P", z") (8)

n=1

@ The query and context inputs are sampled from a distribution D.

@ The task 7" is sampled from a distribution 7. The training tasks form a set 7, C 7.
e ((V;P" z") = max{0,1 — z" - F(V, P")} is the Hinge loss.

@ The model is trained via stochastic gradient descent (SGD).

o Wy, Wk, and Wy initialized from a small scaling of identity matrices. Wy initialized
from Gaussian distribution.
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Problem formulation

Generalization: We introduce in-domain and out-of-domain generalization.

@ In-domain generalization: No distribution shift between training and testing data. The
generalization error is defined as

E (W P, 2)]. 9
XqueryN'DfeT\ﬂr[ ( Z)] ( )

@ Out-of-domain generalization: The testing queries follow D’ # D, and the testing tasks
follow 77 # T. The generalization error is defined as

P, 2)]. 1
xque,yND’,fET’[g(\U’ ,2)] (10)

e P YT



]
Problem formulation

Model pruning:
o Let & € [m] be the index set of W neurons.
@ Pruning neurons in S: removing corresponding rows of the trained Wo.

Wo Wo

a
pruning\A

Figure 6: Pruning on Wo.
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Formulating data and tasks

In-domain data and tasks:
e Given {uj}J’.V’:ll as in-domain relevant (IDR) patterns, each in-domain data x = p; + noise.
@ Each task is defined based on one pair of p, and pp. f(x) = +1 (or —1) if the IDR
pattern of x is p, (or pp). f(x) is a random label in other cases.

Out-of-domain data and tasks: Defined on out-of-domain relevant (ODR) patterns {u;}JM:{I

Task: classification based on p; and u,

Prompt construction: For the task on u, and wp, with I+ I+ I+ I+
a probability of oz/2., select examples of u, and b @ ho—nolse  , +moise fs —nolse + moise
represents the fraction of task-relevant examples in the e e . T

prompt. Replace o with o if it is a testing task. ~— —~— —
Context, @« = 2/3 query

Figure 7: Example of prompt, o = 2/3.
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Main theoretical results

Theorem 1 (In-domain generalization)

For any € > 0, as long as

@ the training tasks Ti uniformly cover all the IDR patterns and labels with
e |/IT| > (My — 1)~Y/2, which means training a small fraction of the total tasks is
sufficient,

1

’

@ the lengths of training and testing prompts l;, > Q(a™1), hs > o/~
© the number of iterations T = @(a_2/3),

and the batch size B > Q(max{e~2, My), then with a high probability, the in-domain
generalization error of the returned model is less than O(e).

e P

18 /39



ICL mechanism by the trained transformer

Proposition 1

° W((?T) and W,(<T) mainly project context inputs to the IDR or ODR pattern.

o After training, attention weights become concentrated on contexts that share the same
IDR/ODR pattern as the query. (induction head)

Figure 8: The magnitude of the trained attention layer.
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ICL mechanism by the trained transformer

Proposition 2

@ The feature embedding of rows of W(T) W( 7 approximate [i, i.e., the average of IDR

patterns.
@ The label embedding of rows W( )W( ) approximate q for positive neurons and —q for
negative neurons.
v
400 400 g 400
$ 125 '
041 ¥
300 1.00 300 | 300
03 g Lab. Emb. a;> 0
= * Feat. Emb. 200 £ 0.75 Lab. Emb. a;<0 200 - 200
o [=
8 0.2 gos0{ g
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Angle to 1

Figure 11: The label embedding of WoWy, . bars:

Figure 10: The feature embedding of WoWy, . bar: ! r
iterations

iteration
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Main theoretical results

Consider each ODR pattern as a linear combination of IDR patterns. Denote S; as the
summation of the linear coefficients.

Theorem 2 (Out-of-domain generalization)

Suppose that the conditions (1) to (3) in Theorem 1 hold. If a constant order of S; > 1 and

e > o _1, then with a high probability, the out-of-domain generalization error of the returned
model is less than O(e).
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Main theoretical results

Theorem 3 (Model pruning)
@ There exists a constant fraction of MLP-layer neurons of W with large weights, while the
remaining have small weights.
o Pruning all neurons with small weights leads to a generalization error O(e + M, Y 2),
which is almost the same as without pruning.
@ Pruning an R fraction of neurons with large weights results in a generalization error
greater than Q(R).

e P SES



Numerical experiments

Verifying the sufficient conditions for out-of-domain generalization.

@ 51 > 1is needed for a desired out-of-domain generalization.

@ The required length of testing prompts decreases as o increases.

107!

10-2 Vi am
- 5=13
e 5;=1.1
—— 5,=09
-4 51=07
10-3 $,=05

Classification error

0 4 8 12 16 20

Context length

Figure 12: Out-of-domain ICL classification error on

GPT-2 with different Sy
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Figure 13: Out-of-domain ICL classification error on

GPT-2 with different o’
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Numerical experiments

Magnitude-based model pruning for out-of-domain ICL inference.

————— baseline 0.8

5 1074 —<« Random
£ —e— Mag.-based
9}
c
el
© 0.4
U 1072
= i
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0
L)
@]

1073

10% 20% 30% 40(2.0
Pruning rate

Figure 14: Out-of-domain classification error with model
pruning of the trained Wy and the magnitude of Wp

neurons.
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Summary

@ This work provides theoretical analyses of the training dynamics of Transformers with
nonlinear attention and nonlinear MLP, and the resulting ICL capability for new tasks with
possible data shift.

@ This work also provides a theoretical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability.

@ This work provably characterizes the mechanism of ICL implemented by a single-head,
one-layer Transformer.
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Further exploration in LLM reasoning ability
Chain-of-Thought (COT)

Standard Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output
A: The answer is 27. €

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
leach is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have? J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 +6 = 9. The

Cnswer is9. o/ J

Figure 16: Few-shot COT [Wei et al.22]

Hongkang Li

Relationship with ICL: prompting multiple intermediate steps of reasoning.
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Further exploration in LLM reasoning ability

Existing works focus on the expressive power of Transformer in implementing COT.
o [Li et el.23]: COT=Filtering+ICL.

o [Feng et al.23, Li et al.24]: Transformers can be constructed to solve many reasoning
problems via COT.

@ [Yang et al.24]: Linear Transformers can be more efficient than softmax Transformers in
some dynamic programming tasks.

Problems to solve in our recent work3:
@ How can a Transformer be trained to perform COT?
@ When is COT better than ICL?
o Generalization with Data/Task distribution shift.

3https://arxiv.org/pdf/2410.02167
e e P S
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Further exploration in LLM reasoning ability

Problem formulation

Consider training on K-steps reasoning tasks f = fx ofx_10---ofhofy.

. X Yi1 o Yik-1) .
P = (Ey, E,--- E,, Q) as the training prompt, where E; = < PoYit Yi.K 1> is the
Yii Yi2 - YiK
: 20 Z1 o Zk—o Zk—1) . : .
i-th context example, Q, = 0 “1 k=2 %k 1) is the first k steps of the reasoning
zZ1 2Zp - Zk_1 0

query for any k in [K]. The label for prediction is zx. Denote each column of P as p;. Add the
positional encoding ¢; (periodic) to each p; to obtain pi = pi + €(i mod K)-

Learning model:

len(P)—1

F(V;P)= Y Wypjsoftmax((Wip) ' WoBquery) (11)
i=1

Given training set {P",z"}N_.. The loss is squared loss.
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Further exploration in LLM reasoning ability

Problem formulation

0

CoT inference: Feed the current prompt to the model to generate the most probable output v
(greedy decoding), and then we put v at the end of P to form the new prompt.

The testing prompt P = (Ey, Bz, - -+ , Ej,, Pquery), Where pguery = (xquer}’).

CoT Generalization error: the average error in each inference step E[% Zszl 1]z # vi]],

X 0

ICL inference: E; = (
Yik O

error: E[1[zx # v]].

8) is the i-th context example. The ICL generalization

e P SES
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Further exploration in LLM reasoning ability

Data modeling

The training tasks are the transition between M training-relevant (TRR) patterns p;. The
testing tasks are the transition between M’ testing-relevant (TSR) patterns p.

Step 1 Step 2

Testing examples contain erroneous steps, and transition matrices characterize the transition.
Examples: correct paths are p} — pf — pbh, ph — ph — pf. Step-wise transition matrices:
Al = <82 82) Al = <8g 82) K-steps transition matrix: Bf = <822 8;2) T

min-max trajectory transition probability, 77 = 0.36. 7/: min-max input-label transition
probability, 7/ = 0.56.
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Further exploration in LLM reasoning ability

Theoretical Results
Define a and o as the fraction of context examples with input sharing the same TRR and TSR

pattern as the query input, respectively.
Theorem 4
For any € > 0, as long as

© the training tasks and samples are selected such that every TRR pattern is equally likely in
every inference step and in each training batch,

@ the length of training prompts l;, > Q(a™1)
© and the number of iterations T = ©(a2K3 + MK (a1 + 1)),

and the batch size B > Q(e~2), then with a high probability, the loss of the returned model is
less than O(e).
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Further exploration in LLM reasoning ability

Theoretical Results

Theorem 5 (CoT generalization)

As long as
@ each TSR pattern p'. is a linear combination of all the TRR pattern p;,
@ the length of testing prompts s > Q((o/7F)72)

then with a high probability, we have the CoT generalization error = Q.

A more informative prompt (larger ') and more accurate inference examples (larger 77) can
reduce the required testing prompt length.

e P EYES
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Further exploration in LLM reasoning ability
Theoretical Results

Comparison with ICL:

We first propose Condition 1: the correct final output is the most probable output by Bf. The
previous condition does not satisfy this condition.

Theorem 6 (ICL generalization)
@ If condition 1 does not hold, then the ICL generalization error > Q(1).
@ If condition 1 holds, and Iss > Q((c/71)~2), we have the ICL generalization error = 0.

Because Condition 1 is not required for CoT generalization, CoT performs better than ICL if
Condition 1 fails.

e P SEYES



Further exploration in LLM reasoning ability
CoT Mechanism

l largest fraction
—
greedy decoding

same TSR, same step  diff. TSR diff. step

Attn: 0.3 03 03 0 32 O.TOZ
t t t ~N /S
Wi W,
step: 1 2 12

12 12 12
b b B B B
My B2 B3 pi Mg ps i pp M3 Hs g He  Haf f |
query
Context examples of 2-steps reasoning labels: py, gy

© When conducting the k-th step reasoning of the query, the trained model assigns
dominant attention weights on the prompt columns that are also the k-th step and share
the same TSR pattern as the query.

@ Then, the fraction of the correct TSR pattern is the largest in the output of each step to
generate the accurate output by greedy decoding.
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Further exploration in LLM reasoning ability

Experiments

100 10°;
§ 1071 § 107t
o o
S s R
O 107° @ ¢=04 o 10

= a=0.6

—— a=08
10_3 + a=1.0
0 20 40 60 80 100

# of context examples

10-3 S A
0 20 40 60 80 100
# of context examples

Figure 17: CoT testing error with different o’ Figure 18: CoT testing error with different T

More testing examples are needed when o/ or 7 is small.
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Further exploration in LLM reasoning ability

Experiments
10° 1.0 7
() L]
o .
© .
s 00811
g © H
o 1071 £ v/ —— same TSR, same step
o - 061 1 )
c = same TSR, diff. step
= % — .- diff. TSR, same step
] 20444 . diff. TSR, diff. step
F 10-2-e oo s |
=& ICL w. Condition 1 E
—— ICL w.o. Condition1 | g g ...
0 20 40 60 80 100 2o
# of context examples "0 200 400 600 800 1000

Iterations

Figure 19: Comparison between CoT and ICL w./w.o.

Condition 1 Figure 20: Mechanism of Transformers for CoT
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Further exploration in LLM reasoning ability

Summary

@ This work provides the training dynamics analysis of nonlinear Transformer towards CoT
generalization.

@ This work also characterizes the requirements for a guaranteed CoT generalization with a
provable mechanism.

@ This work theoretically studies when CoT is better than ICL.
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Future Directions

Some interesting high-level insights:
The low dimensionality of language data leads to the following results of Transformers.
© Induction Head: Concentrated attention+-copying in in/Out-of-domain inference.

@ Sparsity: Neurons only learn a few patterns.

The reason why CoT works is CoT can do “matching and copying” rather than learning any
“logic” from data.

Future directions:
@ What is the mechanism of ICL/CoT in more general generation tasks?
@ Can CoT learn a more complicated reasoning structure provably?

@ Does CoT really make inferences by copying known tokens instead of from any logic that
CoT learns?

Hongkang Li
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Thank you!

Q& A
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Proof idea of Theorem 1

Analytical Framework: Feature learning
@ Assuming a mapping from different patterns to different labels.

@ Characterize the gradient updates, which will be proven to be significant in the directions
of patterns that determine the labels.

© The accumulated gradient updates will lead to different types of trained neurons, which
have different impacts on learning.

High-level idea to prove Theorem 1
© Characterize the gradient updates of Wg, Wx, Wy, and W in terms of IDR patterns.

@ We show the model makes attention weights converge to 1 between the same IDR
patterns and the MLP layer makes predictions based on the label embedding.
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Proof idea of Theorem 1

Self-attention layer

1 L(P™, 2™ W)
Pl 3 P

ot aWg
i+1
=ng 2 (- Z“% (Wor.., > _(Wypl)softmax(p} ' Wi Wopl,..,) > 0]
B i=1 s=1
141
T
. (Wo(i ) Z(vaé)softmax(ps W;W(gpqumy)
s=1
I+1

T
. (WKPZL - Z SOftmax n WK WquuEry)WKpr )pqueryT) .

© Consider z" =1, a; > 0, 1[-] = 1 (“lucky” neurons, will be introduced later), which gives a
positive gradient gain of the last two rows.

© If the attention weights between p{ and pg,,, is large with p; sharing the same IDR
pattern as pg,..,, then —grad(WQ) - Pquery < Pquery approximately as desired.
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Proof idea of Theorem 1

Self-attention layer

1 > oL(Pr, 2, W)

vrh oWk
1 n i e () nT T n
:T’E z (_Z ) Z ai]l[WO(i» ) Z(WVP-S) ) softrnax(ps WKWquueT'y) > 0]
neBsy i=1 s=1
i+1
(Woy,., Y (Wypl)softmax(pl "W WoPguer) W Puery
s=1

I+1
.
(P2 = Y softmax(p} T WL WPl i) )-
r=1

© If the attention weights between pf and p] is large with p? sharing the same IDR pattern
as p?, then —grad(Wk) - p, < p, approximately as desired.
© Combining the result of Wy, this will in turn enlarge the attention weights between pg,.,,

and p{ of the same IDR pattern. An induction can prove this process.
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Proof idea of Theorem 1

What does the attention layer imply from the gradient update?

The weighted summation of p! with attention as coefficients has the following property.

© The feature embedding part will be close to the IDR pattern of pg,.,,, while the IDI
pattern is filtered out.

@ The label embedding part will be close to the label of p? that shares the same IDR pattern

as Pguery- This implies that it will be great if Wo W\ makes predictions only based on the
label embedding. In fact, it is true!

e P SES



Proof idea of Theorem 1

MLP layer (Wy included. It is highly correlated with W)

1 oL 15”,2";\11
s 3 2P LT

neB, OWV
1 m 1+1
=ng > (=2 ail[Wo, > (Wyph)softmax(p} ' Wi Woply,.,) > 0]
neBy i=1 s=1
I4+1

WG, > softmax(p} T Wi Wopy,.., )P -
s=1
© The projection of Grad(W),) onto different IDR patterns replies on Wo,., for different J.
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Proof idea of Theorem 1

MLP layer

How to formulate different Wy neurons?

We characterize “lucky neurons”, i.e., some rows of Wy, which are initialized such that at the
beginning of the training, the indicator function

1[Wo Y. (Wy ps)softmax(p, W, Wqpguer,) > 0] is activated. See definition D.8.

Properties of lucky neurons
© The fraction of lucky neurons > Q(1).

@ During the training, the label embedding becomes approximately in the direction of q or
—q for a; > 0 or a; < 0, respectively.

© The feature embedding gradually becomes the average of IDR patterns along the training.
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Proof idea of Theorem 1

MLP layer

Z 8e(P", 2, 1)
B neBy (')Wo( )
+1

TTB Z —Z )at WO )Z WVps SOft[nax(pnTW;(—Wnguery) 2 0}
neby

1+1
Z(WVPE)SOfmaX( WK Wquu,ery .

s=1
@ We can use an induction to prove the gradient update by combining the changes of W, .

@ Lucky neurons of +q will grow approximately in the direction of W), ps of +q, which
further enhances such a direction. The same for lucky neurons of —gq.

© Unlucky neurons has small weights due to unstable a; and 1[].
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Proof idea of Theorem 1

To sum up

(#1 —-I_(;-3V5)_> I\ /- q Relu

Uy + 0.1v2>—’ W, z L

pll )
(“3 __(;'41/1)’ 0.1 / \-_q Relu

(111 +0.21/3)_> WQ attention score w. WV pI;(lgmg

Part I: Attention Part II: MLP

@ Attention weights between the same IDR pattern, i.e., p1 + 0.2v3 and 1 — 0.3vs, become
dominant, resulting in a weighted summation close to (u{,q")".
T.a) or (3T —q")T

@ Lucky neurons are proved to be either (@', . This leads to a correct

prediction given (] ,q") " as the input.
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Proof idea of Theorem 2

@ Each ODR pattern as a linear combination of IDR patterns: ensure Proposition 1 still
holds for ODR patterns.

@ 51 > 1 allows the lucky neurons still activated: Approximately,
T T T _
WS WD (" q") ~a il +q g
M
=i Z cni+q'q
i=1
12
y (12)

=Y cii'pi+q'q
i=1

>p'pi+q'q
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).

@ Each attention layer selects contexts with the same IDR pattern as the query.

. v 08 "
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Figure 21: Layer 1 self-attention Figure 22: Layer 2 self-attention Figure 23: Layer 3 self-attention
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).

@ The magnitude of the majority of neurons increases along the training.

@ The angle changes still hold for one of the layers.
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Figure 24: Layer 1 self-attention
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Figure 25: Layer 2 self-attention
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Figure 26: Layer 3 self-attention
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Numerical experiments

Comparing ICL on a one-layer Transformer with other machine learning algorithms.

109;

. 10° —— L
. —<— Logistic o —— Logistic
e —— SVM Gau. 2 — SVMGau.
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Figure 27: Binary classification performance of using Figure 28: Binary classification performance of using
different algorithms, o’ = 0.8 different algorithms, o' = 0.6

o Logistic: logistic regression; SVM Gau.: SVM with Gaussian kernel; SVM Lin.: SVM with
linear kernel; 1-NN: 1-nearest neighbor; 3-NN: 3-nearest neighbor.
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