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Development of deep learning

Efficient learning methods are needed for increasing model sizes.
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Figure 1: Deep Learning paradigm®
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Efficient learning

Fine-tuning cost
@ Model size: Hundreds of billion.

@ Memory: Gradients, optimizer states, etc. Scale up with the
model size.

@ Time: Take many days.

Can we improve or remove fine-tuning?

Efficient learning methods
e From data: Prompt engineering, Self-supervised learning.
@ From model: Pruning, Quantization, Low-rank adaptation.
@ From hardware: Parallelism and scheduling, Optimized

kernels.

Hongkang Li
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Figure 2: The finetuning process.

October, 2025 3/40



]
Outline

Practice — Theoretical Understanding

Optimization and Generalization analysis of models and algorithms

We introduce two works on theoretical foundations of efficient learning (No fine-tuning).
@ In-Context Learning: Input prompt. ICML 2024.
@ Task Vectors: editing the model weights. ICLR 2025 Oral (Top 1.8%).
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How Do Nonlinear Transformers Learn and Generalize in
In-Context Learning?

Hongkang Li, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Meng Wang

Accepted by International Conference on Machine Learning 2024.
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Large Language Model (LLM) and In-context learning (ICL)

@ In-context learning makes predictions for new tasks on pre-trained LLM without
fine-tuning the model.

@ It is implemented by providing a few testing examples and necessary instructions as a
prompt for the testing data.

f(xquery):ei
T

Pre-trained LLM

t t t 4 4 t
X1 f(x1) %3 f(x3) x3 f(x3) = Xquery
[cat, katze, dog, hund, apple, apfel, -+ egg]

N—— N

——
translation task  prompt
Figure 3: Machine Translation with ICL
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Our focus

Despite the empirical success of ICL, one fundamental and theoretical question for ICL is less
investigated, i.e.,

How can a Transformer be trained to perform ICL and
generalize in and out of domain successfully and efficiently?

Specifically,
@ What are the sufficient conditions for out-of-domain ICL?
o What is the mechanism of ICL?

@ Can we prune the model in in-context inference and why?
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Our work and major contributions

Summary of contributions and comparisons with related theoretical works.

Theoretical Nonlinear Nonlinear Training  Distribution Tasks
Works Attention MLP Analysis  -Shifted Data
[Zhang et al.24] v v linear regression
[Huang et al.24] v v linear regression
[Wu et al.24] v linear regression
Ours v v v v classification

Table 1: Comparison with existing works about training analysis and generalization guarantee of ICL
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Problem formulation

We study binary classification problems. Given the input Xquer,, we aim to predict the label
f(Xquery) for the task f. We conduct training with constructed prompts P on a model to

enable ICL.
Context inputs Feature embedding
b e 12
x]. i X2 ... XI
P = (= T
yii y2 - Yy
Context ouTtputs Label embedding

Figure 4: Prompt for ICL.

yi is an embedding of f(x;). yi=q if f(x;) =+1. y; = —q if f(x;) = —1.

Example: Classify fruits (label 4+1) and animals (label —1).
Prompt: x; =Apple, y1 = q, xo =Cat, yo = —q, Xquer, =Orange.

Predict: f(Xquery) = +1 or —17
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Problem formulation

In-domain data (~ D) and tasks (€ 7):
e Given {uj}}\/’:ll as in-domain relevant (IDR) patterns (orthonormal), each in-domain data
X = pj + noise.

@ Each task is defined based on one pair of 5 and pp. f(x) = +1 (or —1) if the IDR
pattern of x is p, (or pp). Otherwise f(x) is a random label. |7| = My(M; — 1).
Out-of-domain data (~ D’) and tasks (€ 7'): Defined on out-of-domain relevant (ODR)

patterns {“;}J’W::il T = My (M] —1).

Task: classification based on p; and u,

Prompt construction: For the task on p, and pp, with I+ I+ I+ I+

a probability of «/2, select examples of p, and pp. « 4 —noise i, +moise Hs—noise  p, +noise
represents the fraction of task-relevant examples in the +q —q —q t
prompt. Replace o with o if it is a testing task. T Context. @ = 2/3 — query

Figure 5: Example of prompt, o = 2/3.
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Problem formulation

Learner model: a single-head, one-layer Transformer with a self-attention layer and a
two-layer perceptron, i.e.,

I
F(V; P) =a'Relu(Wo Y~ Wyp; - attn(V; P, i), )
i=1
attn(V; P, ) = softmaxquery((WKp,-)TWquue,y)
Model training: The training is to solve the empirical risk minimization using prompt and label
pairs {P"aZ"}n:f"eTw V= {Wq, Wk, Wy, Wo, a}, where each training task f” € Ty, C T,

> oUv; P2 = min — > max{0,1-z"-F(¥,P")} (2)

nfreTey |7-”| mfreTy,

n
m

@ The model is trained via stochastic gradient descent (SGD).

o Wy, Wk, and Wy initialized from a small scaling of identity matrices. Wy initialized
from Gaussian distribution.

Hongkang Li
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]
Problem formulation

T c2vsc3 D

‘nidoma‘n [:]

Generalization: We define in-domain and out-of-domain e s

clvsc2

generalization. - .
Out-of-
domain
cl'vsc2'

@ In-domain generalization: No distribution shift between training and testing data. Unseen
tasks but seen data. The generalization error is defined on unseen tasks 7\7;, as
E LV P, Z)]. 3
Xquery"/DJET\ﬂr[ ( )] ( )
@ Out-of-domain generalization: The testing queries follow D’ # D, and the testing tasks
follow 77 # T. Unseen tasks and OOD data. The generalization error is defined as

E  [(v:P,2). 4
XqueryND,,feT,[ ( Z)] ( )
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]
Problem formulation

Model pruning:
o Let & € [m] be the index set of W neurons.
@ Pruning neurons in S: removing corresponding rows of the trained Wo.

Wo Wo

a
pruning\A

Figure 6: Pruning on Wo.
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Main theoretical results

Theorem 1 (In-domain generalization)

For any € > 0, as long as

© the training tasks T, uniformly cover all the IDR patterns and labels with |Ti.| > My,
which means training a small fraction of the total tasks | T |/|T| > (My — 1)~/2 is
sufficient,

1

’

@ the lengths of training and testing prompts l;, > Q(a™1), hs > o/~
© the number of iterations T = @(a_2/3),

and the batch size B > Q(max{e~2, My), then with a high probability, the in-domain
generalization error of the returned model is less than O(e).
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ICL mechanism by the trained transformer

Proposition 1

° W((?T) and W,(<T) mainly project context inputs to the IDR or ODR pattern.

o After training, attention weights become concentrated on contexts that share the same
IDR/ODR pattern as the query. (induction head)

Figure 7: The magnitude of the trained attention layer.
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ICL mechanism by the trained transformer

Proposition 2

@ The feature embedding of rows of WéT) W\(/T) approximate [i, i.e., the average of IDR
patterns. The label embedding of rows WéT) W\(/T) approximate q for positive neurons
and —q for negative neurons.

@ MLP neurons distinguish label embeddings instead of feature embeddings to predict /abe/s./

5 400 400 gr 400
1.25
0.4 *
300 1.00 300 | 300
§o.3 {3075 Lab. Emb. a;> 0
2 * Feat. Emb. 200 g7 Lab. Emb. a;<0 200 - 200
502 2050
= s [']
o1 % 100 025 100[f 100
0.0 o 0 0.00 - o Ho
’ w4 n2 3m4 N 0 w4 n2 3m4 N
Angle to 1 Angle to g

Figure 10: The label embedding of WoW,,. bars:

Figure 9: The feature embedding of WoW,,. bar:
iterations

iteration
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).

@ Each attention layer selects contexts with the same IDR pattern as the query.

. v 08 "
o 9 © © J
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Figure 11: Layer 1 self-attention Figure 12: Layer 2 self-attention Figure 13: Layer 3 self-attention
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).

@ The magnitude of the majority of neurons increases along the training.

@ The angle changes still hold for one of the layers.
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Figure 14: Layer 1 self-attention
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.
A Comparison with LLM reasoning ability

CoT Mechanism (from our follow-up work?)

I largest fraction
————
greedy decoding
same TSR, same step  diff. TSR diff. step

Attn: 0.3 03 0.3 0.02 0.02
t t ~ /
Wi
step: 1 2 12 12

12
[ O il
My Ha B3 M1 Mg ps By P M3 Hs B Be 1t
query
Context examples of 2-steps reasoning labels: pq,

© When conducting the k-th step reasoning of the query, the trained model assigns
dominant attention weights on the prompt columns that are also the k-th step and share
the same pattern as the query.

@ Then, the fraction of the correct pattern is the largest in the output of each step to
generate the accurate output by greedy decoding.

2Li et al., ICLR 2025. Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis.
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Main theoretical results

Consider each ODR pattern as a linear combination of IDR patterns. Denote S; as the
summation of the linear coefficients.

Theorem 2 (Out-of-domain generalization)

Suppose that the conditions (1) to (3) in Theorem 1 hold. If a constant order of S; > 1 and
ls > /™Y, then with a high probability, the out-of-domain generalization error of the returned
model is less than O(e).

Training with a small amount of training tasks can lead to generalization on out-of-domain
data if the ODR pattern is relatively “positively” correlated with IDR patterns and the testing
prompt is long enough.

e BV



Main theoretical results

Theorem 3 (Model pruning)
@ There exists a constant fraction of MLP-layer neurons of Wy with large weights, while the
remaining have small weights.
@ Pruning all neurons with small weights leads to a generalization error O(e + M, Y 2),
which is almost the same as without pruning.
@ Pruning an R fraction of neurons with large weights results in a generalization error
greater than Q(R).

Three kinds of learned neurons, i.e., rows of W(()T) W\(/T):

e close to a scaling of (2',q")".
e close to a scaling of (2',—q")".
@ close to initialization with small weights and diverse directions.

e WG



Numerical experiments

Verifying the sufficient conditions for out-of-domain generalization.

@ 51 > 1is needed for a desired out-of-domain generalization.

@ The required length of testing prompts decreases as o increases.

107!

10-2 Vi am
- 5=13
e 5;=1.1
—— 5,=09
-4 51=07
10-3 $,=05

Classification error

0 4 8 12 16 20

Context length

Figure 17: Out-of-domain ICL classification error on

GPT-2 with different Sy
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Figure 18: Out-of-domain ICL classification error on
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Numerical experiments

Magnitude-based model pruning for out-of-domain ICL inference.
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Figure 19: Out-of-domain classification error with model
pruning of the trained Wy and the magnitude of Wp

neurons.
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Summary

@ This work provides theoretical analyses of the training dynamics of Transformers with
nonlinear attention and nonlinear MLP, and the resulting ICL capability for new tasks with
possible data shift.

@ This work also provides a theoretical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability.

@ This work provably characterizes the mechanism of ICL implemented by a single-head,
one-layer Transformer.
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When is Task Vector Provably Effective for Model Editing? A
Generalization Analysis of Nonlinear Transformers

Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, Meng Wang

Accepted by International Conference on Learning Representations 2024.
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N
Task Vectors and Task Arithmetic

AV =g ©
task vector
()

Figure 21: Task vector.

task arithmetic

/No fine-tuning
/' needed

w(0)

Figure 22: Task arithmetic by adding up two task vectors
for inference. No fine-tuning on the two tasks are needed.

Hongkang Li

Task vector is the difference between the fine-tuned
model and the pre-trained model.

Ay =i —yO), (5)
where V- is the model fine-tuned on (X, y) ~ Dy for
task 7, and W(O) is the pre-trained model.

Task arithmetic refers to adding a linear combination of
task vectors of different tasks.
Given W(®) and a set of task vectors {AW 7}y,

v =vO 43 NAvg,
ey

(6)

for the inference on the downstream task.

October, 2025 26 /40



Task Vectors and Task Arithmetic

Applications: multi-task learning, unlearning, and out-of-domain generalization in vision and
language generation tasks.

Advantage: No need of fine-tuning for new tasks.

@ Linear coefficient selection: Simple averaging [llharco et al.22, Wortsman et al.2022],
Fisher-weighted averaging [Metena & Raffel, 2022] for multi-task learning; negation for unlearning
[Mharco et al.22].

@ Task vector construction: sparsification [Yadav et al.2023, Yu et al.24], linearization [Ortiz-Jimenez
et al.23].
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N
Task Correlations Affect Task Arithmetic

Experiments on Colored-MNIST dataset:
o Classify the parity of digits.
@ Control the fraction of red/green digit colors for different task correlations/distributions.

“Irrelevant” Tasks “Aligned” Tasks “Contradictory” Tasks
Multi-Task  Unlearning | Multi-Task  Unlearning | Multi-Task  Unlearning
Best A 1.4 -0.6 0.2 0.0 0.6 -1.0
Ti Acc | 91.83 306 95.02 (06 95.62 (0.00) 95.20 042y | 79.54 16700  94.21 o6y
T> Acc | 88.40 (sesy  50.34 (us24) | 9246 323 90.51 (518 | 62.52 (3372 4.97 (8989

Hongkang Li

Figure 23: Test accuracy (%) of ¥ = w(©) 4 AV7, + AAV T, on task Ty and T2. Different task correlations = Different arithmetic coefficients.

| Fine-Tuning | v | U

b o | Searching A;, Az in [-2, 3]

(1.2,-06)
91.74

T’ Acc 9221 88.10 45.06

Figure 24: Test ¥ = w(©) + >\1A\IJ7—1 + >\2AW7—1 on task T'. T' shares a different distribution from Ty or Ta. The optimal \1 and \» generates
a model that outperforms any separately trained model \U;—l and W;—z. T’ and Ty are positively correlated; T' and Ta are negatively correlated.
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Problems to Solve

Q1: Can we provide generalization guarantees for task arithmetic?
Q2: How does task correlation quantitatively affect the performance of task arithmetic?

Q3: Why do the arithmetic operations of task vectors perform well for out-of-domain
generalization?

e P 5



N
Related Theoretical Works

@ Some works [Ginart et al.2019, Guo et al.2020, Neel et al.2021, Mu & Klabjan, 2024]
theoretically analyze the performance of machine unlearning from an optimization
perspective.

@ [lzmailov et al.2018, Frankle et al.2020] propose linear mode connectivity, concluding the
existence of a small-loss connected region in the loss landscape.

@ [Ortiz-Jimenez et al.23] study task arithmetic in model editing with the Neural Tangent
Kernel (NTK) framework to linearize the models.
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Problem Formulation

We study binary classification tasks that map each X = (x1,--- ,xp) to y € {+1,—1}, where
x; €RY, i e[P].

The learner model is considered as a one-layer nonlinear Transformer with W as the set of
parameters, where W, V € V are trainable,

P P
f(X;v) = %Z a(T,)Relu(Z Vx,softmax;(xs ' Wx;)). (7)
=1 s=1

Data formulation: Let g7 be the discriminative e e
pattern of 7. Each token is chosen from {p7, —p7} X [I:H
or other irrelevant patterns. If y =1 (y = —1), the
number of tokens equal to g7 (or —p7) is larger X1XpX3Xe XXz X3Xy
than that of —pr (or pur). y +1 1

Figure 25: Data formulation.
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Theoretical Results (Multi-Task learning and Unlearning)

Let W = WO L AW + AAV,,. 3 =0(1/d). Loss function £(-): Hinge loss.
@ Define a = H7T- W7, as the correlation between 77 and 75.

@ a>0, <0, or =0, corresponds to “aligned”, “contradictory”, or‘irrelevant” relationship.

V7. and W are trained to achieve an € generalization error on 71 and 7, respectively.

Theorem 4 (Success of Multi-Task Learning on Irrelevant and Aligned Tasks)

Then, as long as a« > 0 and A > 1 — a + 3, we have a desired multi-task learning performance
with W, i.e., Ex y)p (X, y; V) < O(c) + [A] - B, and E(x y)~p. (X, y; V) < O(e).

Theorem 5 (Success of Unlearning on Irrelevant and Contradictory Tasks)

As long as o < 0 and —©(a~2) < X < 0,we have a desired unlearning performance with V,
ie., E(XvY)NDTlg(X’y; \U) < 9(6) + |)\‘ . B, and E(X,y)NDTzé(X7y; \U) > G)(l)

il = = — S kel
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Theoretical Results (Out-of-Domain Generalization)

Out-of-domain generalization on the task 77, given task vectors of tasks {7;};cy,. Suppose
o all 7 are orthogonal to each other,
o the discriminative pattern of 7" is puyv = >y, vitr; + - p'p with 1} L {p7}iev,,
@ not all v; are zero.

Theorem 6 (Out-of-domain generalization using task arithmetic)

Uy,
- ) Let W = w(0) ¢ > icvy NAVT, A # 0. Then, for some ¢ € (0,1) and
N all i € Vy, and a non-empty region of \;, i € Vy, where
Ury
EHU-J.’ ‘u_Tz zievw )\i’)’i >1+c,
> Yiev, MV > 1+, (8)
|AI’ . /8 S c,
Figure 26: An illustration
of /.
o we have E(x ,y~p_, (X, y; V) < O(e).
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|
Theoretical Results (Efficiency)

Recall that W,V € V. AWy = Wi - WO, Avy = v — v,

Corollary 1 (Low-rank Approximation)
For any task T defined above, there exists rank-1 AW, g and AV, g, such that

1
HAWT— AWLRHF < M- e+ k)giM, and HAVT — AViR|lF < e(f), (9)

Corollary 2 (Sparsification)

Let u; be the i-th row of AVir. Then, for a constant fraction of u;, we have ||u;|| > Q(m~1/?);
for the remaining neurons, we have ||u;|| < O(m~1/2€) (pruning these neurons still ensures
Theorems 4-6 to hold.)
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Experiments

Image classification on Colored-MNIST with ViT-Small/16
@ Consider a merged model ¥ = w0 4+ AMAVL + M AVr, constructed by two task vectors
for the targeted task 7’. We estimate 71 = 0.792, 7> =~ —0.637.
@ The result justifies the sufficient conditions in Theorem 6.

P ’ M
(A) (B
Figure 27: (A) The heatmap of the testing accuracy on T’ using the merged model V. The black dot is the
baseline, while the green cross is the best A1, A2. (B) The red region satisfies (8), while the blue region does not.
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Experiments

Language generation with Phi-3-small (7B)
e Given “Harry Potter 1" (HP1), “Harry Potter 2" (HP2) by J.K. Rowling, and “Pride and
Prejudice” (PP) by Jane Austen.
o Estimate task correlations &(V7,, VI ) = Ex[Sim(f(X; V), f(X; W ))]. HP1 and HP2
are semantically similar, while PP is less aligned with HP1 or HP2.
@ Unlearning Trp1 can effectively degrade the performance of the aligned (Typ2) as well,
while the degradation on the less aligned (7pp) is relatively smaller.

A | O(baseline) | —0.2 | —04 | —0.6 | —0.8 | -1
Tap1 0.2573 0.1989 | 0.1933 | 0.1888 | 0.1572 | 0.1142 (55.61% )
Tap2 0.2688 0.2113 | 0.1993 | 0.1938 | 0.1622 | 0.1563 (52.29% J.)
Tep 0.1942 0.1825 | 0.1644 | 0.1687 | 0.1592 | 0.1541 (20.65% |)

Figure 28: Rouge-L scores of Tyyp; Tipse, and Tpp by W = v N Awﬁ,};l using low-rank task vector AWLP’I}E,I (Phi-3-small).
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Summary

o We quantitatively characterize the selection of arithmetic hyper-parameters and their
dependence on task correlations so that the resulting task vectors achieve desired
multi-task learning, unlearning, and out-of-domain generalization.

@ We also demonstrate the validity of using sparse or low-rank task vectors.

@ Theoretical results are justified on vision models and large language models.
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Future Directions

@ Analyzing activation-space task vector methods.

@ Study the loss landscape of weight/activation-space task vectors or mode connectivity.

@ Developing task vector methods together with model pruning.
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