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Development of deep learning

Efficient learning methods are needed for increasing model sizes.

Figure 1: Deep Learning paradigm1

1source from [Zhao et al.23]
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Efficient learning

Fine-tuning cost
Model size: Hundreds of billion.
Memory: Gradients, optimizer states, etc. Scale up with the
model size.
Time: Take many days.

Can we improve or remove fine-tuning?

Efficient learning methods
From data: Prompt engineering, Self-supervised learning.
From model: Pruning, Quantization, Low-rank adaptation.
From hardware: Parallelism and scheduling, Optimized
kernels.

Figure 2: The finetuning process.
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Outline

Practice → Theoretical Understanding

Optimization and Generalization analysis of models and algorithms

We introduce two works on theoretical foundations of efficient learning (No fine-tuning).
In-Context Learning: Input prompt. ICML 2024.
Task Vectors: editing the model weights. ICLR 2025 Oral (Top 1.8%).
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How Do Nonlinear Transformers Learn and Generalize in
In-Context Learning?

Hongkang Li, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Meng Wang

Accepted by International Conference on Machine Learning 2024.
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Large Language Model (LLM) and In-context learning (ICL)

In-context learning makes predictions for new tasks on pre-trained LLM without
fine-tuning the model.
It is implemented by providing a few testing examples and necessary instructions as a
prompt for the testing data.

Figure 3: Machine Translation with ICL
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Our focus

Despite the empirical success of ICL, one fundamental and theoretical question for ICL is less
investigated, i.e.,

How can a Transformer be trained to perform ICL and
generalize in and out of domain successfully and efficiently?

Specifically,
What are the sufficient conditions for out-of-domain ICL?
What is the mechanism of ICL?
Can we prune the model in in-context inference and why?
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Our work and major contributions

Summary of contributions and comparisons with related theoretical works.

Theoretical
Works

Nonlinear
Attention

Nonlinear
MLP

Training
Analysis

Distribution
-Shifted Data

Tasks

[Zhang et al.24] ✓ ✓ linear regression
[Huang et al.24] ✓ ✓ linear regression
[Wu et al.24] ✓ linear regression

Ours ✓ ✓ ✓ ✓ classification

Table 1: Comparison with existing works about training analysis and generalization guarantee of ICL
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Problem formulation

We study binary classification problems. Given the input xquery , we aim to predict the label
f (xquery ) for the task f . We conduct training with constructed prompts P on a model to
enable ICL.

Figure 4: Prompt for ICL.

yi is an embedding of f (xi ). yi = q if f (xi ) = +1. yi = −q if f (xi ) = −1.

Example: Classify fruits (label +1) and animals (label −1).
Prompt: x1 =Apple, y1 = q, x2 =Cat, y2 = −q, xquery =Orange.
Predict: f (xquery ) = +1 or − 1?
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Problem formulation

In-domain data (∼ D) and tasks (∈ T ):
Given {µj}M1

j=1 as in-domain relevant (IDR) patterns (orthonormal), each in-domain data
x = µj + noise.
Each task is defined based on one pair of µa and µb. f (x) = +1 (or −1) if the IDR
pattern of x is µa (or µb). Otherwise f (x) is a random label. |T | = M1(M1 − 1).

Out-of-domain data (∼ D′) and tasks (∈ T ′): Defined on out-of-domain relevant (ODR)
patterns {µ′

j}
M′

1
j=1. |T ′| = M ′

1(M
′
1 − 1).

Prompt construction: For the task on µa and µb, with
a probability of α/2, select examples of µa and µb. α
represents the fraction of task-relevant examples in the
prompt. Replace α with α′ if it is a testing task.

Figure 5: Example of prompt, α = 2/3.
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Problem formulation

Learner model: a single-head, one-layer Transformer with a self-attention layer and a
two-layer perceptron, i.e.,

F (Ψ;P) = a⊤Relu(WO

l∑
i=1

WVpi · attn(Ψ;P, i)),

attn(Ψ;P, i) = softmaxquery ((WKpi )
⊤WQpquery )

(1)

Model training: The training is to solve the empirical risk minimization using prompt and label
pairs {Pn, zn}n:f n∈Ttr , Ψ = {WQ ,WK ,WV ,WO , a}, where each training task f n ∈ Ttr ⊂ T ,

min
Ψ

1
|Ttr |

∑
n:f n∈Ttr

ℓ(Ψ;Pn, zn) = min
Ψ

1
|Ttr |

∑
n:f n∈Ttr

max{0, 1 − zn · F (Ψ,Pn)} (2)

The model is trained via stochastic gradient descent (SGD).
WQ , WK , and WV initialized from a small scaling of identity matrices. WO initialized
from Gaussian distribution.
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Problem formulation

Generalization: We define in-domain and out-of-domain
generalization.

In-domain generalization: No distribution shift between training and testing data. Unseen
tasks but seen data. The generalization error is defined on unseen tasks T \Ttr as

E
xquery∼D,f ∈T \Ttr

[ℓ(Ψ;P, z)]. (3)

Out-of-domain generalization: The testing queries follow D′ ̸= D, and the testing tasks
follow T ′ ̸= T . Unseen tasks and OOD data. The generalization error is defined as

E
xquery∼D′,f ∈T ′

[ℓ(Ψ;P, z)]. (4)
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Problem formulation
Model pruning:

Let S ∈ [m] be the index set of WO neurons.
Pruning neurons in S: removing corresponding rows of the trained WO .

Figure 6: Pruning on WO .
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Main theoretical results

Theorem 1 (In-domain generalization)

For any ϵ > 0, as long as
1 the training tasks Ttr uniformly cover all the IDR patterns and labels with |Ttr | ≥ M1,

which means training a small fraction of the total tasks |Ttr |/|T | ≥ (M1 − 1)−1/2 is
sufficient,

2 the lengths of training and testing prompts ltr ≥ Ω(α−1), lts ≥ α′−1,
3 the number of iterations T = Θ(α−2/3),

and the batch size B ≥ Ω(max{ϵ−2,M1), then with a high probability, the in-domain
generalization error of the returned model is less than O(ϵ).
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ICL mechanism by the trained transformer

Proposition 1

W (T )
Q and W (T )

K mainly project context inputs to the IDR or ODR pattern.
After training, attention weights become concentrated on contexts that share the same
IDR/ODR pattern as the query. (induction head)

Figure 7: The magnitude of the trained attention layer.
xdr: IDR or ODR pattern of pquery .

Figure 8: The attention weight summation
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ICL mechanism by the trained transformer

Proposition 2

The feature embedding of rows of W (T )
O W (T )

V approximate µ̄, i.e., the average of IDR
patterns. The label embedding of rows W (T )

O W (T )
V approximate q for positive neurons

and −q for negative neurons.
MLP neurons distinguish label embeddings instead of feature embeddings to predict labels.

Figure 9: The feature embedding of WOWV . bar:
iteration

Figure 10: The label embedding of WOWV . bars:
iterations
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).
Each attention layer selects contexts with the same IDR pattern as the query.

Figure 11: Layer 1 self-attention Figure 12: Layer 2 self-attention Figure 13: Layer 3 self-attention
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ICL mechanism by the trained transformer

Results of multi-layer Transformers (3-layer).
The magnitude of the majority of neurons increases along the training.
The angle changes still hold for one of the layers.

Figure 14: Layer 1 self-attention Figure 15: Layer 2 self-attention Figure 16: Layer 3 self-attention
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A Comparison with LLM reasoning ability
CoT Mechanism (from our follow-up work2)

1 When conducting the k-th step reasoning of the query, the trained model assigns
dominant attention weights on the prompt columns that are also the k-th step and share
the same pattern as the query.

2 Then, the fraction of the correct pattern is the largest in the output of each step to
generate the accurate output by greedy decoding.

2Li et al., ICLR 2025. Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis.
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Main theoretical results

Consider each ODR pattern as a linear combination of IDR patterns. Denote S1 as the
summation of the linear coefficients.

Theorem 2 (Out-of-domain generalization)

Suppose that the conditions (1) to (3) in Theorem 1 hold. If a constant order of S1 ≥ 1 and
lts ≥ α′−1, then with a high probability, the out-of-domain generalization error of the returned
model is less than O(ϵ).

Training with a small amount of training tasks can lead to generalization on out-of-domain
data if the ODR pattern is relatively “positively” correlated with IDR patterns and the testing
prompt is long enough.
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Main theoretical results
Theorem 3 (Model pruning)

There exists a constant fraction of MLP-layer neurons of WO with large weights, while the
remaining have small weights.

Pruning all neurons with small weights leads to a generalization error O(ϵ+M
−1/2
2 ),

which is almost the same as without pruning.
Pruning an R fraction of neurons with large weights results in a generalization error
greater than Ω(R).

Three kinds of learned neurons, i.e., rows of W (T )
O W (T )

V :
close to a scaling of (µ̄⊤,q⊤)⊤.
close to a scaling of (µ̄⊤,−q⊤)⊤.
close to initialization with small weights and diverse directions.
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Numerical experiments

Verifying the sufficient conditions for out-of-domain generalization.
S1 ≥ 1 is needed for a desired out-of-domain generalization.
The required length of testing prompts decreases as α′ increases.

Figure 17: Out-of-domain ICL classification error on
GPT-2 with different S1

Figure 18: Out-of-domain ICL classification error on
GPT-2 with different α′
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Numerical experiments

Magnitude-based model pruning for out-of-domain ICL inference.

Figure 19: Out-of-domain classification error with model
pruning of the trained WO and the magnitude of WO
neurons.

Figure 20: Out-of-domain classification error with
different α′
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Summary

This work provides theoretical analyses of the training dynamics of Transformers with
nonlinear attention and nonlinear MLP, and the resulting ICL capability for new tasks with
possible data shift.

This work also provides a theoretical justification for magnitude-based pruning to reduce
inference costs while maintaining the ICL capability.

This work provably characterizes the mechanism of ICL implemented by a single-head,
one-layer Transformer.
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When is Task Vector Provably Effective for Model Editing? A
Generalization Analysis of Nonlinear Transformers

Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, Meng Wang

Accepted by International Conference on Learning Representations 2024.
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Task Vectors and Task Arithmetic

Figure 21: Task vector.

Figure 22: Task arithmetic by adding up two task vectors
for inference. No fine-tuning on the two tasks are needed.

Task vector is the difference between the fine-tuned
model and the pre-trained model.

∆ΨT = Ψ∗
T −Ψ(0), (5)

where Ψ∗
T is the model fine-tuned on (X , y) ∼ DT for

task T , and Ψ(0) is the pre-trained model.

Task arithmetic refers to adding a linear combination of
task vectors of different tasks.
Given Ψ(0) and a set of task vectors {∆ΨTi}i∈V ,

Ψ = Ψ(0) +
∑
i∈V

λi∆ΨTi , (6)

for the inference on the downstream task.
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Task Vectors and Task Arithmetic

Applications: multi-task learning, unlearning, and out-of-domain generalization in vision and
language generation tasks.

Advantage: No need of fine-tuning for new tasks.

Linear coefficient selection: Simple averaging [Ilharco et al.22,Wortsman et al.2022],
Fisher-weighted averaging [Metena & Raffel, 2022] for multi-task learning; negation for unlearning
[Ilharco et al.22].
Task vector construction: sparsification [Yadav et al.2023,Yu et al.24], linearization [Ortiz-Jimenez
et al.23].
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Task Correlations Affect Task Arithmetic

Experiments on Colored-MNIST dataset:
Classify the parity of digits.
Control the fraction of red/green digit colors for different task correlations/distributions.

Figure 23: Test accuracy (%) of Ψ = Ψ(0) + ∆ΨT1 + λ∆ΨT2 on task T1 and T2. Different task correlations ⇒ Different arithmetic coefficients.

Figure 24: Test Ψ = Ψ(0) + λ1∆ΨT1 + λ2∆ΨT1 on task T ′. T ′ shares a different distribution from T1 or T2. The optimal λ1 and λ2 generates
a model that outperforms any separately trained model Ψ∗

T1
and Ψ∗

T2
. T ′ and T1 are positively correlated; T ′ and T2 are negatively correlated.
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Problems to Solve

Q1: Can we provide generalization guarantees for task arithmetic?

Q2: How does task correlation quantitatively affect the performance of task arithmetic?

Q3: Why do the arithmetic operations of task vectors perform well for out-of-domain
generalization?
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Related Theoretical Works

Some works [Ginart et al.2019,Guo et al.2020,Neel et al.2021,Mu & Klabjan, 2024]
theoretically analyze the performance of machine unlearning from an optimization
perspective.

[Izmailov et al.2018,Frankle et al.2020] propose linear mode connectivity, concluding the
existence of a small-loss connected region in the loss landscape.

[Ortiz-Jimenez et al.23] study task arithmetic in model editing with the Neural Tangent
Kernel (NTK) framework to linearize the models.
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Problem Formulation

We study binary classification tasks that map each X = (x1, · · · , xP) to y ∈ {+1,−1}, where
xi ∈ Rd , i ∈ [P].
The learner model is considered as a one-layer nonlinear Transformer with Ψ as the set of
parameters, where W ,V ∈ Ψ are trainable,

f (X ; Ψ) =
1
P

P∑
l=1

a⊤
(l)Relu(

P∑
s=1

Vxssoftmaxl(xs⊤Wxl)). (7)

Data formulation: Let µT be the discriminative
pattern of T . Each token is chosen from {µT ,−µT }
or other irrelevant patterns. If y = 1 (y = −1), the
number of tokens equal to µT (or −µT ) is larger
than that of −µT (or µT ).

Figure 25: Data formulation.
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Theoretical Results (Multi-Task learning and Unlearning)

Let Ψ = Ψ(0) +∆ΨT1 + λ∆ΨT2 . β = Θ(1/d). Loss function ℓ(·): Hinge loss.
Define α = µ⊤

T1
µT2 as the correlation between T1 and T2.

α > 0, < 0, or = 0, corresponds to “aligned”, “contradictory”, or“irrelevant” relationship.
Ψ∗

T1
and Ψ∗

T2
are trained to achieve an ϵ generalization error on T1 and T2, respectively.

Theorem 4 (Success of Multi-Task Learning on Irrelevant and Aligned Tasks)

Then, as long as α ≥ 0 and λ ≥ 1 − α+ β, we have a desired multi-task learning performance
with Ψ, i.e., E(X ,y)∼DT1

ℓ(X , y ; Ψ) ≤ Θ(ϵ) + |λ| · β, and E(X ,y)∼DT2
ℓ(X , y ; Ψ) ≤ Θ(ϵ).

Theorem 5 (Success of Unlearning on Irrelevant and Contradictory Tasks)

As long as α ≤ 0 and −Θ(α−2) ≤ λ ≤ 0,we have a desired unlearning performance with Ψ,
i.e., E(X ,y)∼DT1

ℓ(X , y ; Ψ) ≤ Θ(ϵ) + |λ| · β, and E(X ,y)∼DT2
ℓ(X , y ; Ψ) ≥ Θ(1).
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Theoretical Results (Out-of-Domain Generalization)
Out-of-domain generalization on the task T ′, given task vectors of tasks {Ti}i∈VΨ

. Suppose
all µTi are orthogonal to each other,
the discriminative pattern of T ′ is µT ′ =

∑
i∈VΨ

γiµTi + κ · µ′
⊥ with µ′

⊥ ⊥ {µTi}i∈VΨ
,

not all γi are zero.

Figure 26: An illustration
of µT ′ .

Theorem 6 (Out-of-domain generalization using task arithmetic)

Let Ψ = Ψ(0) +
∑

i∈VΨ
λi∆ΨTi , λi ̸= 0. Then, for some c ∈ (0, 1) and

all i ∈ VΨ, and a non-empty region of λi , i ∈ VΨ, where
∑

i∈VΨ
λiγi ≥ 1 + c ,∑

i∈VΨ
λiγ

2
i ≥ 1 + c ,

|λi | · β ≤ c,

(8)

we have E(X ,y)∼DT ′ ℓ(X , y ; Ψ) ≤ Θ(ϵ).
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Theoretical Results (Efficiency)

Recall that W ,V ∈ Ψ. ∆WT = W ∗
T − W (0), ∆VT = V ∗

T − V (0).

Corollary 1 (Low-rank Approximation)

For any task T defined above, there exists rank-1 ∆WLR and ∆VLR , such that

∥∆WT −∆WLR∥F ≤ M · ϵ+ 1
logM

, and ∥∆VT −∆VLR∥F ≤ Θ(ϵ), (9)

Corollary 2 (Sparsification)

Let ui be the i-th row of ∆VT . Then, for a constant fraction of ui , we have ∥ui∥ ≥ Ω(m−1/2);
for the remaining neurons, we have ∥ui∥ ≤ O(m−1/2ϵ) (pruning these neurons still ensures
Theorems 4-6 to hold.)
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Experiments

Image classification on Colored-MNIST with ViT-Small/16
Consider a merged model Ψ = Ψ(0) + λ1∆ΨT1 + λ2∆ΨT2 constructed by two task vectors
for the targeted task T ′. We estimate γ1 ≈ 0.792, γ2 ≈ −0.637.
The result justifies the sufficient conditions in Theorem 6.

(A) (B)
Figure 27: (A) The heatmap of the testing accuracy on T ′ using the merged model Ψ. The black dot is the
baseline, while the green cross is the best λ1, λ2. (B) The red region satisfies (8), while the blue region does not.
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Experiments

Language generation with Phi-3-small (7B)
Given “Harry Potter 1” (HP1), “Harry Potter 2” (HP2) by J.K. Rowling, and “Pride and
Prejudice” (PP) by Jane Austen.
Estimate task correlations α̂(Ψ∗

T1
,Ψ∗

T2
) = EX [Sim(f (X ; Ψ∗

T1
), f (X ; Ψ∗

T1
))]. HP1 and HP2

are semantically similar, while PP is less aligned with HP1 or HP2.
Unlearning THP1 can effectively degrade the performance of the aligned (THP2) as well,
while the degradation on the less aligned (TPP) is relatively smaller.

Figure 28: Rouge-L scores of THP1 THP2, and TPP by Ψ = Ψ(0)′ + λ · ∆ΨLR
HP1 using low-rank task vector ∆ΨLR

HP1 (Phi-3-small).
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Summary

We quantitatively characterize the selection of arithmetic hyper-parameters and their
dependence on task correlations so that the resulting task vectors achieve desired
multi-task learning, unlearning, and out-of-domain generalization.

We also demonstrate the validity of using sparse or low-rank task vectors.

Theoretical results are justified on vision models and large language models.
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Future Directions

Analyzing activation-space task vector methods.

Study the loss landscape of weight/activation-space task vectors or mode connectivity.

Developing task vector methods together with model pruning.
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Thank you!
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