Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

Hongkang Li¹, Meng Wang¹, Sijia Liu^{2,3}, Pin-Yu Chen³, Jinjun Xiong⁴

¹Rensselaer Polytechnic Institute

²Michigan State University

³IBM Research

⁴University at Buffalo

International Conference on Machine Learning (ICML 2022) July, 2022

Hongkang Li

Sampling in Graph Neural Network

- Graph topology sampling: node-wise, layer-wise, subgraph sampling.
- Why sampling? To reduce computational & memory costs.

GraphSage (Hamilton et al., 2017)

Under what conditions does a graph convolutional network (GCN) learned with graph topology sampling achieve satisfactory generalization?

Hongkang Li

Problem formulation and GCN Model

Consider a graph with N nodes and the normalized adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$. We study a semi-supervised node classification problem with $|\Omega|$ known labels, where $\Omega \subset [N]$. The goal is to predict unknown labels in $[N]/\Omega$.

- Feature matrix: $\boldsymbol{X} \in \mathbb{R}^{N \times d}$, distribution-free.
- Learner network: three-layer GCN with m_1 , m_2 neurons in the two hidden layers.

$$F_{\boldsymbol{A}}(\boldsymbol{e}_{g},\boldsymbol{X};\boldsymbol{W},\boldsymbol{V}) = \boldsymbol{e}_{g}^{\top}\boldsymbol{A} \cdot \operatorname{ReLU}(\boldsymbol{r} + \boldsymbol{B}_{2})\boldsymbol{C},$$

$$\boldsymbol{r} = \boldsymbol{A} \cdot \operatorname{ReLU}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{W} + \boldsymbol{B}_{1})\boldsymbol{V} \quad (1)$$

- Loss function: non-negative & convex, including *l*-2 regression and cross entropy
- SGD with graph topology sampling.

Hongkang Li

Graph topology Sampling

Categorize the nodes of the graph into different groups based on orders of degree. Implement group-wise uniform sampling.

- Randomly removing nodes and the incident edges.
- Higher sampling rate on higher-degree nodes.
- For sampled nodes, scale the corresponding columns of **A**. For unsampled nodes, set the corresponding columns of **A** to 0.

Effective adjacency matrix \mathbf{A}^* : $\mathbf{A}^* = \mathbf{A} \cdot \text{diag}(p_1^*, p_2^*, \dots, p_N^*)$, where p_i^* , $i \in [N]$ is the group-wise sampling probability of node *i*. \mathbf{A}^* is more balanced than \mathbf{A} for unbalanced graphs.

Theorem 1 (informal)

For any small $\gamma, \ \epsilon >$ 0, as long as the overparameterization satisfies

$$m_1 = m_2 = m \ge \operatorname{poly}\left(\|\boldsymbol{A}^*\|_{\infty}, \epsilon^{-1}\right), \tag{2}$$

and the sample complexity satisfies

$$|\Omega| \ge \Theta(\mathsf{poly}(\epsilon^{-1}, \|\boldsymbol{A}^*\|_{\infty}) \cdot \log N \log m),$$
 (3)

- Training with graph topology sampling returns a model that has the same performance as the model trained by a GCN with **A*** as the *effective* adjacency matrix
- A generalization error at most $(1 + \gamma)OPT_{\mathbf{A}^*} + \epsilon$.
- OPT_{A*}: the smallest population risk over the choices of **C**^{*}, **W**₁^{*}, **W**₂^{*}, **V**₁^{*}, **V**₂^{*} in the target function, which is defined as

$$F_{\boldsymbol{A}^*}^*(\boldsymbol{e}_g,\boldsymbol{X}) = \boldsymbol{e}_g^{\top} \boldsymbol{A}^* \left(\Phi(\boldsymbol{r}_1) \odot \boldsymbol{r}_2 \right) \boldsymbol{C}^*, \ \boldsymbol{r}_1 = \boldsymbol{A}^* \phi_1(\boldsymbol{A}^* \boldsymbol{X} \boldsymbol{W}_1^*) \boldsymbol{V}_1^*, \ \boldsymbol{r}_2 = \boldsymbol{A}^* \phi_2(\boldsymbol{A}^* \boldsymbol{X} \boldsymbol{W}_2^*) \boldsymbol{V}_2^*$$
(4)

Numerical Results

- Graph sampling reduces the impact of dominating nodes, resulting in a more balanced A^* .
- Similar results of FastGCN (Chen et al., 2018).

References

References

- Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In Advances in neural information processing systems, pp. 1024-1034, 2017.
- Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with graph convolutional networks via importance sampling. In International Conference on Learning Representations, 2018
- Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 257-266, 2019.