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Deep Neural Networks

Computer Vision

Recommendation System

Natural Language Processing

Gaming

Great empirical success, but limited theoretical justification.
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Generalization Analysis of Neural Networks

Why does the model learned by minimizing the empirical risk on the training data perform well
on the testing data?

Challenges for training performance
Non-convex objective function

Challenges for small generalization gap
Insufficient training samples

Training and test error against the number of
samples

To guarantee the testing performance, need a small training error and a small generalization
gap simultaneously.
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Related Works on Generalization Analysis

Overparameterized neural networks

number of learnable parameters > number of training samples
Pros

1 Allow random initialization.
2 Zero training error.

Cons
1 Consider linearized networks → The

training problem is convex.
2 Do not explain the advantage of deep

networks.
3 Require a significantly larger number

of neurons than that in practice.

Mean Field: [Mei et al., 2018; Chizat & Bach, 2018; Fang et al., 2019; Nguyen, 2019]
Neural Tangent Kernel: [Jacot et al., 2018; Allen-Zhu et al., 2019; Du et al, 2019; Zou
et al., 2019; 2020].
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Related works

Model recovery framework

Assume a fixed network with unknown ground-truth
parameter W ∗. The output y is generated by W ∗

and the input x ∈ Rd . We aim to estimate W ∗

given dataset {xi , yi}ni=1.
Generalization error of a returned model W is
measured by ∥W −W ∗∥F .
Solves the nonlinear the empirical risk minimization
directly.

Landscape analysis: almost locally convex near W ∗

Initialize near W ∗ followed by gradient descent.

This line of works includes [Zhong et al., 2017; Zhang et
al., 2020a; 2020b; 2021a; 2021b; Fu et al., 2020].

Objective function and population risk function
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Related works

Pros
1 Deal with the network with a fixed number of neurons.
2 No linearization of the network.

Cons
1 One-hidden-layer neural networks
2 Input from the standard Gaussian with zero mean and unit variance.
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Gaussian Mixture Model

Generalization analysis of neural networks with non-standard Gaussian inputs is less
investigated.
Many practical datasets can be modelled by a mixture of distributions [Li Liang, 2018].
We formulate a Gaussian mixture model (GMM) as the input distribution.

MNIST [LeCun et al., 1998] Cifar-10 [Krizhevsky, 2009]
ImageNet [Deng et al., 2009]

Q: what is the generalization guarantee when data follow GMM?
How does the mean and variance affect the learning performance?
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Problem Formulation

Input data following GMM: x ∼
∑L

l=1 λlN (µl ,Σl) ∈ Rd

One-hidden-layer network with ground-truth weights W ∗.

P(y = 1|x) = 1
K

K∑
j=1

ϕ(w∗
j
⊤x) (1)

ϕ is the sigmoid function.
Given n pairs of data {xi , yi}ni=1, the training problem
minimizes the empirical loss

fn(W ) =
1
n

n∑
i=1

ℓ(W ; xi , yi ), (2)

where ℓ is the cross-entropy function.

One-hidden-layer networks
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Algorithm

Gradient Descent with Tensor Initialization
1: Input: Training data {(xi , yi )}ni=1, the

step size η0;
2: Initialization: W0 ← Tensor initializa-

tion method;
3: for t = 0, 1, · · · ,T − 1 do
4: Wt+1 = Wt − η0∇fn(W )
5: end for
6: Output: WT =0

Tensor Initialization
Initialize a weight matrix in the local
convex region of W ∗.
We develop a different tensor
construction from that in [Zhong et
al., 2017] because of the
non-standard-Gaussian input.

Vanilla Gradient Descent
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Main Theoretical Results

Theorem 1

Given the samples from {xi , yi}ni=1 satisfying

n ≥ nsc := poly(K )B · d log2 d (3)

for positive value functions B and v with high probability, the iterates {Wt}Tt=1 returned by
Algorithm 1 converge linearly to a critical point Ŵn with the rate of convergence v , i.e.,

||Wt − Ŵn||F ≤ v t ||W0 − Ŵn||F . (4)

There exists a permutation matrix P∗ such that the distance between Ŵn and W ∗P∗ is

||Ŵn −W ∗P∗||F ≤ O
(
K

5
2 ·

√
d log n/n

)
. (5)
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Main Theoretical Results (cont’d)

Corollary 1

When everything else is fixed,
1 nsc and v increase as the norm of one mean increases.
2 nsc and v first decreases and then increases, as the norm of one covariance matrix

increases,

Sample complexity: Θ(d log2 d), the same order as the case of standard Gaussian inputs in
[Zhong et al., 2017; Fu et al., 2020].

The iterates converge to Ŵn linearly. Ŵn is close to W ∗ with a diminishing distance in n.
Mean increases → a higher sample complexity and converges slower.
Variance increase → the sample complexity first decreases and then increases; converges
faster first and then slower.
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Technical challenges

1 Landscape analysis fails with non-standard-Gaussian inputs
We show the local strong convexity around W ∗.

2 Generalization gap bound is required for the new input distribution
We establish new concentration bounds.

3 The initialization method needs to be updated.
We develop a new version of tensor initialization with new tensor constructions.
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Empirical experiments

Settings
d = 5.
Generate W ∗ with each entry from N (0, 1).
Initialize W0 close to W ∗.

GMM
1 Sample complexity against feature dimension.

x ∼ 1
2N (1, I ) + 1

2N (−1, I ).
2 Sample complexity/Convergence rate against mean value.

x ∼ 1
2N (µ · 1, I ) + 1

2N (−µ · 1, I ).
3 Sample complexity/Convergence rate against variance value.

x ∼ 1
2N (1,Σ) + 1

2N (−1,Σ).

4 ∥Ŵ −W ∗∥F against
√
log n/n.

x ∼ 1
2N (1, 9I ) + 1

2N (−1, 9I ).
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Empirical experiments
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Figure 1: n versus d

The boundary line of black and white
parts is almost straight, indicating an
approximate linearity between n and
d .

Figure 2: ∥Ŵ − W ∗∥F against
√

log n/n.

When n increases, i.e., when√
log n/n decreases, the distance

between Ŵ and W ∗ decreases.
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Empirical experiments

Figure 3: n versus µ

The sample complexity increases with
µ.

Figure 4: n versus Σ

The sample complexity first decrease
and then increase as σ increases.
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Empirical experiments

Figure 5: Convergence rate with different µ

Converges slower as µ increases.

Figure 6: Convergence rate with different Σ

Converges fastest when ∥Σ
1
2∥=1.
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Conclusion and future work

We study the problem of learning a fully connected neural network when the input features
belong to the Gaussian mixture model from the theoretical perspective.

We propose a gradient descent algorithm with tensor initialization, and the iterates are
proved to converge linearly to a critical point with guaranteed generalization.

We characterize the sample complexity for successful recovery, and the sample complexity
is proved to be dependent on the parameters of the input distribution.

Future direction: multi-layer neural networks and multi-task learning.
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Thank you!
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Tensor initialization

1 Estimate the subspace spanned by {w∗
1 , · · · ,w∗

K}.

2 Estimate the direction of w∗
i , i ∈ [K ] using the KCL algorithm [Kuleshov et al., 2015].

3 Estimate the magnitude of wi , i ∈ [K ] by solving a linear system.
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